scholarly journals Serial Noninvasive In Vivo Positron Emission Tomographic Tracking of Percutaneously Intramyocardially Injected Autologous Porcine Mesenchymal Stem Cells Modified for Transgene Reporter Gene Expression

2008 ◽  
Vol 1 (2) ◽  
pp. 94-103 ◽  
Author(s):  
Mariann Gyöngyösi ◽  
Jeronimo Blanco ◽  
Teréz Marian ◽  
Lajos Trón ◽  
Örs Petneházy ◽  
...  
2002 ◽  
Vol 25 (8) ◽  
pp. 1115-1118 ◽  
Author(s):  
Kiyoshi Tanigawa ◽  
Katsunao Tanaka ◽  
Hidetaka Nagase ◽  
Hidekazu Miyake ◽  
Mamoru Kiniwa ◽  
...  

1996 ◽  
Vol 23 (1) ◽  
pp. 75 ◽  
Author(s):  
SR Mudge ◽  
WR Lewis-Henderson ◽  
RG Birch

Luciferase genes from Vibrio harveyi (luxAB) and firefly (luc) were introduced into E. coli, Agrobacteriurn, Arabidopsis and tobacco. Transformed bacteria and plants were quantitatively assayed for luciferase activity using a range of in vitro and in vivo assay conditions. Both lux and luc proved efficient reporter genes in bacteria, although it is important to be aware that the sensitive assays may detect expression due to readthrough from distant promoters. LUX activity was undetectable by liquid nitrogen-cooled CCD camera assays on intact tissues of plants which showed strong luxAB expression by in vitro assays. The decanal substrate for the lux assay was toxic to many plant tissues, and caused chemiluminescence in untransformed Arabidopsis leaves. These are serious limitations to application of the lux system for sensitive, non-toxic assays of reporter gene expression in plants. In contrast, LUC activity was readily detectable in intact tissues of all plants with luc expression detectable by luminometer assays on cell extracts. Image intensities of luc-expressing leaves were commonly two to four orders of magnitude above controls under the CCD camera. Provided adequate penetration of the substrate luciferin is obtained, luc is suitable for applications requiring sensitive, non-toxic assays of reporter gene expression in plants.


2006 ◽  
Vol 18 (2) ◽  
pp. 236
Author(s):  
B. Mohana Kumar ◽  
H.-F. Jin ◽  
J.-G. Kim ◽  
S. Balasubramanian ◽  
S.-Y. Choe ◽  
...  

Abnormal gene expression is frequently observed in nuclear transfer (NT) embryos and is one of the suggested causes of the low success rates of this approach. Recent study has suggested that adult stem cells may be better donor cells for NT, as their less differentiated state may ease epigenetic reprogramming by the oocyte (Kato et al. 2004 Biol. Reprod. 70, 415-418). In the present study, we investigated the expression profile of some selected genes involved in the development of the pre-implantation embryos of in vivo- and NT-derived origin using bone marrow mesenchymal stem cells (MSCs) and porcine fetal fibroblasts (pFF) as donors. Isolated population of MSCs from porcine bone marrow were characterized by cell-surface antigen profile (CD13pos, CD105pos, CD45neg, and CD133neg) and by their extensive consistent differentiation to multiple mesenchymal lineages (adipocytic, osteocytic and chondrocytic) under controlled in vitro conditions (Pittenger et al. 1999 Science 284, 143-147). Primary cultures of pFF from a female fetus at <30 days of gestation were established. for NT, donor cells at 3-4 passages were employed. Embryos cloned from MSCs showed enhanced developmental potential compared to pFF cloned embryos, indicated by higher rates of blastocyst formation (15.3% � 4.8 and 9.0% � 3.9, respectively) and total cell number (31.5 � 7.2 and 20.5 � 5.4, respectively) in Day 7 blastocysts. Total RNA was extracted from pools (triplicates) of 10 embryos each of 8-cell, morula, and blastocyst stages of in vivo and NT origin using Dynabeads� mRNA DIRECT" kit (Dynal, Oslo, Norway). Reverse transcription was performed with a Superscript" III cDNA synthesis kit (Invitrogen, Carlsbad, CA, USA). Real-time PCR was performed on a Light cycler� using FastStart DNA Master SYBR Green I (Roche Diagnostics, Mannheim, Germany). The expression profiles of genes involved in transcription (Oct-4, Stat3), DNA methylation (Dnmt1), de novo methylation (Dnmt3a), histone deacetylation (Hdac2), anti-apoptosis (Bcl-xL), and embryonic growth (Igf2r) were determined. The mRNA of H2a was employed to normalize the levels. Significant differences (P < 0.05) in the relative abundance of Stat3, Dnmt1, Dnmt3a, Bcl2, and Igf2r were observed in pFF NT embryos compared with in vivo-produced embryos, whereas embryos derived from MSCs showed expression patterns similar to those of in vivo-produced embryos. However, Oct-4 and Hdac2 revealed similar expression profiles in NT- and in vivo-produced embryos. These results indicate that MSC-derived NT embryos had enhanced embryonic development and their gene expression pattern more closely resembled that of in vivo-produced embryos. Hence, less differentiated MSCs may have a more flexible potential in improving the efficiency of the porcine NT technique. This work was supported by Grant No. R05-2004-000-10702-0 from KOSEF, Republic of Korea.


2009 ◽  
Vol 21 (1) ◽  
pp. 237 ◽  
Author(s):  
D. Kim ◽  
A. J. Maki ◽  
H.-J. Kong ◽  
E. Monaco ◽  
M. Bionaz ◽  
...  

Adipose tissue presents an appealing alternative to bone marrow as a source of mesenchymal stem cells (MSC). However, in order to enhance cell proliferation and differentiation, 3-dimensional (3-D) culture may be required. A 3-D culture has benefits due to its more in vivo-like environment. Further, to form a functional tissue, a scaffold material is required to ensure proper shape and allow for efficient delivery of nutrients and growth factors. Alginate, a resorbable hydrogel, is a potential injectable scaffold for fat and bone tissue engineering due to its high biocompatibility, gelation with calcium and slow dissolution in a physiologic environment. In the present study, we examined the viability, gene expression and morphology of MSC, isolated from porcine adipose (ADSC) and bone marrow (BMSC), during osteogenic and adipogenic differentiation in a 3D alginate hydrogel environment for 0, 7 and 14 days (d). ADSC and BMSC were infused into alginate hydrogels, which polymerized upon the addition of Ca+2 ions. Both stem cell types were differentiated into osteoblasts using 0.1 μm dexamethasone, 10 mm beta glycerophosphate and 50 μm ascorbic acid, whereas adipocytes were differentiated using 10 μm insulin, 1 μm dexamethasone, and 0.5 mm IBMX. Osteogenic differentiation was confirmed using alkaline phosphatase, Von Kossa, and alizarin red S staining and adipogenic differentiation was confirmed using Oil Red O. Cell viability and proliferation was quantified using the MTT assay. Gene expression was measured using qPCR. The morphology of ADSC and BMSC differentiated toward osteogenic lineages changed with both cell types forming osteogenic nodules over time. The nodules formed by ADSC were larger in diameter than those formed by BMSC. Unlike the osteogenic cells that formed nodules, the ADSC and BMSC differentiated into adipogenic cells showed no significant changes in cell size or aggregation. Gene expression results indicated increased PPARG expression in BMSC with time whereas ADSC showed a peak of expression on day 7 and then decreased. ADSC showed increased (14-fold) PPRG expression when compared with BMSC. ADSC had 160-fold less expression of ALP than BMSC. BMSC showed a 16-fold higher expression level of BGLAP than ADSC. ADSC showed a 15.8% higher expression than BMSC for COL1a1. Both ADSC and BMSC showed similar trends SPARC expression, but BMSC had a 12-fold higher expression of SPP1 than ADSC. In summary, both types of mesenchymal stem cells successfully differentiated into both lineages and maintained viability in the hydrogel over time. In conclusion, alginate is a viable scaffold material for the differentiation of mesenchymal stem cells for tissue engineering applications. These results allow for future studies using the pig as an in vivo fat and bone tissue engineering model. This research was supported by the Illinois Regenerative Medicine Institute.


2012 ◽  
Vol 39 (8) ◽  
pp. 1243-1250 ◽  
Author(s):  
Guopeng Zhang ◽  
Xiaoli Lan ◽  
Tzu-Chen Yen ◽  
Quan Chen ◽  
Zhijun Pei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document