scholarly journals Vascular Endothelial Growth Factor‐121 Administration Mitigates Halogen Inhalation‐Induced Pulmonary Injury and Fetal Growth Restriction in Pregnant Mice

Author(s):  
Dylan R. Addis ◽  
James A. Lambert ◽  
Changchun Ren ◽  
Stephen Doran ◽  
Saurabh Aggarwal ◽  
...  

Background Circulating levels of sFLT‐1 (soluble fms‐like tyrosine kinase 1), the extracellular domain of vascular endothelial growth factor (VEGF) receptor 1, and its ratio to levels of placental growth factor are markers of the occurrence and severity of preeclampsia. Methods and Results C57BL/6 pregnant mice on embryonic day 14.5 (E14.5), male, and non‐pregnant female mice were exposed to air or to Br 2 at 600 ppm for 30 minutes and were treated with vehicle or with VEGF‐121 (100 μg/kg, subcutaneously) daily, starting 48 hours post‐exposure. Plasma, bronchoalveolar lavage fluid, lungs, fetuses, and placentas were collected 120 hours post‐exposure. In Br 2 ‐exposed pregnant mice, there was a time‐dependent and significant increase in plasma levels of sFLT‐1 which correlated with increases in mouse lung wet/dry weights and bronchoalveolar lavage fluid protein content. Supplementation of exogenous VEGF‐121 improved survival and weight gain, reduced lung wet/dry weights, decreased bronchoalveolar lavage fluid protein levels, enhanced placental development, and improved fetal growth in pregnant mice exposed to Br 2 . Exogenous VEGF‐121 administration had no effect in non‐pregnant mice. Conclusions These results implicate inhibition of VEGF signaling driven by sFLT‐1 overexpression as a mechanism of pregnancy‐specific injury leading to lung edema, maternal mortality, and fetal growth restriction after bromine gas exposure.

2011 ◽  
Vol 26 (2) ◽  
pp. 118-121 ◽  
Author(s):  
Ali Karami ◽  
Mostafa Ghanei ◽  
Farshid Alaeddini ◽  
Mohammad Javad Soltanpour ◽  
Fatemeh Pourali ◽  
...  

2015 ◽  
Vol 96 (2) ◽  
pp. 220-223 ◽  
Author(s):  
E V Ul’yanina ◽  
I F Fatkullin

The review covers the up-to-date data of vascular endothelial growth factor role in forming of placental blood circulation in non-complicated pregnancy and in fetal growth retardation syndrome. It is shown that the normal trophoblast invasion to the spiral arteries wall in the myometrium and adequate remodeling of spiral arteries are essential for the normal fetal growth and development. The processes of blood vessels formation - vasculogenesis and angiogenesis - are described in detail. The process of angiogenesis regulation by growth factors and their receptors is reviewed. The importance of angiogenic and antiangiogenic factors coordinated action for the adequate placental microvasculature formation and normal fetal development is described. The growth factor complexes and their receptors formation processes and competition for receptor binding, as well as the role of placental growth factor in uteroplacental complex angiogenesis are analyzed. It is shown that the serum growth factors represent the mechanisms of pathologic reactions in placental insufficiency and fetal growth restriction syndrome. Special attention is given to the family of vascular endothelial growth factor as for the most important angiogenesis regulator. To determine the physiological role of vascular endothelial growth factor and to assess the its influence on angiogenesis and adequate uteroplacental and fetoplacental blood circulation formation, the features of vascular endothelial growth factor chemical structure are described. Determining the vascular endothelial growth factor in blood may be used to assess the mother-placenta-fetus system formation. The need for developing the criteria for choosing the optimal delivery term in pregnant with fetal growth restriction syndrome is discussed.


Sign in / Sign up

Export Citation Format

Share Document