chicken model
Recently Published Documents


TOTAL DOCUMENTS

152
(FIVE YEARS 31)

H-INDEX

21
(FIVE YEARS 5)

2022 ◽  
Vol 18 (1) ◽  
Author(s):  
Yi Ren ◽  
Xin Lu ◽  
Zhonghe Yang ◽  
Han Lei

Abstract Background The development of an influenza vaccine for poultry that provides broadly protective immunity against influenza H5Nx viruses is a challenging goal. Results Lactococcus lactis (L. lactis)/pNZ8149-HA1-M2 expressing hemagglutinin-1 (HA1) of A/chicken/Vietnam/NCVD-15A59/2015 (H5N6) and the conserved M2 gene of A/Vietnam/1203/2004 (H5N1) was generated. L. lactis/pNZ8149-HA1-M2 could induce significant humoral, mucosal and cell-mediated immune responses, as well as neutralization antibodies. Importantly, L. lactis/pNZ8149-HA1-M2 could prevent disease symptoms without significant weight loss and confer protective immunity in a chicken model against lethal challenge with divergent influenza H5Nx viruses, including H5N6 and H5N1. Conclusions L. lactis/pNZ8149-HA1-M2 can serve as a promising vaccine candidate in poultry industry for providing protection against H5Nx virus infection in the field application.


2021 ◽  
Vol 12 ◽  
Author(s):  
Josele Flores-Santin ◽  
Warren W. Burggren

Biomedical research focusing on physiological, morphological, behavioral, and other aspects of development has long depended upon the chicken (Gallus gallus domesticus) as a key animal model that is presumed to be typical of birds and generally applicable to mammals. Yet, the modern chicken in its many forms is the result of artificial selection more intense than almost any other domesticated animal. A consequence of great variation in genotype and phenotype is that some breeds have inherent aberrant physiological and morphological traits that may show up relatively early in development (e.g., hypertension, hyperglycemia, and limb defects in the broiler chickens). While such traits can be useful as models of specific diseases, this high degree of specialization can color general experimental results and affect their translational value. Against this background, in this review we first consider the characteristics that make an animal model attractive for developmental research (e.g., accessibility, ease of rearing, size, fecundity, development rates, genetic variation, etc.). We then explore opportunities presented by the embryo to adult continuum of alternative bird models, including quail, ratites, songbirds, birds of prey, and corvids. We conclude by indicating that expanding developmental studies beyond the chicken model to include additional avian groups will both validate the chicken model as well as potentially identify even more suitable avian models for answering questions applicable to both basic biology and the human condition.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Rujiu Hu ◽  
Hua Lin ◽  
Mimi Wang ◽  
Yuezhen Zhao ◽  
Haojing Liu ◽  
...  

Abstract Background Lactobacillus reuteri strains are widely used as probiotics to prevent and treat inflammatory bowel disease by modulating the host’s immune system. However, the underlying mechanisms by which they communicate with the host have not been clearly understood. Bacterial extracellular vesicles (EVs) have been considered as important mediators of host-pathogen interactions, but their potential role in commensals-host crosstalk has not been widely studied. Here, we investigated the regulatory actions of EVs produced by L. reuteri BBC3, a gut-associated commensal bacterium of Black-Bone chicken, in the development of lipopolysaccharide (LPS)-induced intestinal inflammation in a chicken model using both in vivo and in vitro experiments. Results L. reuteri BBC3 produced nano-scale membrane vesicles with the size range of 60–250 nm. Biochemical and proteomic analyses showed that L. reuteri BBC3-derived EVs (LrEVs) carried DNA, RNA and several bioactive proteins previously described as mediators of other probiotics’ beneficial effects such as glucosyltransferase, serine protease and elongation factor Tu. In vivo broiler experiments showed that administration of LrEVs exerted similar effects as L. reuteri BBC3 in attenuating LPS-induced inflammation by improving growth performance, reducing mortality and decreasing intestinal injury. LrEVs suppressed the LPS-induced expression of pro-inflammatory genes (TNF-α, IL-1β, IL-6, IL-17 and IL-8), and improved the expression of anti-inflammatory genes (IL-10 and TGF-β) in the jejunum. LrEVs could be internalized by chicken macrophages. In vitro pretreatment with LrEVs reduced the gene expression of TNF-α, IL-1β and IL-6 by suppressing the NF-κB activity, and enhanced the gene expression of IL-10 and TGF-β in LPS-activated chicken macrophages. Additionally, LrEVs could inhibit Th1- and Th17-mediated inflammatory responses and enhance the immunoregulatory cells-mediated immunosuppression in splenic lymphocytes of LPS-challenged chickens through the activation of macrophages. Finally, we revealed that the reduced content of both vesicular proteins and nucleic acids attenuated the suppression of LrEVs on LPS-induced inflammatory responses in ex vivo experiments, suggesting that they are essential for the LrEVs-mediated immunoregulation. Conclusions We revealed that LrEVs participated in maintaining intestinal immune homeostasis against LPS-induced inflammatory responses in a chicken model. Our findings provide mechanistic insight into how commensal and probiotic Lactobacillus species modulate the host’s immune system in pathogens-induced inflammation.


2021 ◽  
Author(s):  
Yadav S. Bajagai ◽  
Jason C. Steel ◽  
Anita Radovanovic ◽  
Dragana Stanley

Herbs and spices have been used throughout human history for their medicinal qualities. Our nutrigenomic study shows major benefits and consequences of prolonged oregano use in chicken model.


Author(s):  
Martin A. Estermann ◽  
Andrew T. Major ◽  
Craig A. Smith

The gonads of vertebrate embryos are unique among organs because they have a developmental choice; ovary or testis formation. Given the importance of proper gonad formation for sexual development and reproduction, considerable research has been conducted over the years to elucidate the genetic and cellular mechanisms of gonad formation and sexual differentiation. While the molecular trigger for gonadal sex differentiation into ovary of testis can vary among vertebrates, from egg temperature to sex-chromosome linked master genes, the downstream molecular pathways are largely conserved. The cell biology of gonadal formation and differentiation has long thought to also be conserved. However, recent discoveries point to divergent mechanisms of gonad formation, at least among birds and mammals. In this mini-review, we provide an overview of cell lineage allocation during gonadal sex differentiation in the mouse model, focusing on the key supporting and steroidogenic cells and drawing on recent insights provided by single cell RNA-sequencing. We compare this data with emerging information in the chicken model. We highlight surprising differences in cell lineage specification between species and identify gaps in our current understanding of the cell biology underlying gonadogenesis.


Genome ◽  
2020 ◽  
Author(s):  
Tasnim H. BEACON ◽  
James R DAVIE

The chicken model organism has advanced the areas of developmental biology, virology, immunology, oncology, epigenetic regulation of gene expression, conservation biology, and genomics of domestication. Further, the chicken model organism has aided in our understanding of human disease. Through the recent advances in high-throughput sequencing and bioinformatic tools, researchers have successfully identified sequences in the chicken genome that have human orthologs, improving mammalian genome annotation. In this review, we highlight the importance of chicken as an animal model in basic and pre-clinical research. We will present the importance of chicken in poultry epigenetics and in genomic studies that trace back to their ancestor, the last link between human and chicken tree of life. There are still many genes of unknown function in the chicken genome yet to be characterized. By taking advantage of recent sequencing technologies, it is possible to gain further insight into the chicken epigenome.


2020 ◽  
Author(s):  
Chiao-Wei Lin ◽  
Ting-Wei Huang ◽  
Yu-Ju Peng ◽  
Yuan-Yu Lin ◽  
Harry John Mersmann ◽  
...  

2020 ◽  
Vol 8 (10) ◽  
pp. 1613
Author(s):  
Gisela F. Erf ◽  
Gilles Le Pape ◽  
Sylvie Rémy ◽  
Caroline Denesvre

Herpesvirus of turkey (HVT) is commonly used as a vaccine to protect chickens against Marek’s disease. Following vaccination, HVT infects feathers where it can be detected in all chicken lines examined. Unlike the parental Brown line (BL), Smyth line (SL) chickens develop vitiligo, due to autoimmune destruction of melanocytes in feathers. Previous reports showed a strong inflammatory response in Smyth chickens’ feathers at vitiligo onset, that subsided once melanocytes were destroyed, and depigmentation was complete. Here, we questioned whether the local autoimmune response in the Smyth model influences HVT infection and persistence in feathers. For this, one-day-old SL and BL chickens were vaccinated with Newcastle disease (rHVT-ND). Vitiligo was scored and HVT loads in pigmented and non-pigmented growing feathers were quantified regularly over 20 weeks. Chickens of both lines showed moderate HVT loads in feathers. At the onset of active vitiligo, the HVT load was significantly higher in SL compared to BL feathers. However, no difference in HVT loads was noticed between pigmented and non-pigmented feathers from SL chickens. Therefore, surprisingly, the inflammatory response in feathers of SL chickens did not inhibit HVT infection and persistence, but on the contrary, temporarily promoted HVT infection in feathers.


Genes ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 1008
Author(s):  
Yingfeng Tao ◽  
Xiaoliu Zhou ◽  
Xinting Zheng ◽  
Shijun Li ◽  
Chunyan Mou

Cerebral hernia in crested chicken has been characterized as the protrusion of cerebral hemispheres into the unsealed skull for hundreds of years, since Charles Darwin. The development of deformed forebrain (telencephalon) of cerebral hernia remains largely unknown. Here, the unsealed frontal skull combined with misplaced sphenoid bone was observed and potentially associated with brain protuberance. The shifted pallidum, elongated hippocampus, expanded mesopallium and nidopallium, and reduced hyperpallium were observed in seven regions of the malformed telencephalon. The neurons were detected with nuclear pyknosis and decreased density. Astrocytes showed uneven distribution and disordered protuberances in hyperpallium and hippocampus. Transcriptome analyses of chicken telencephalon (cerebral hernia vs. control) revealed 547 differentially expressed genes (DEGs), mainly related to nervous system development, and immune system processes, including astrocyte marker gene GFAP, and neuron and astrocyte developmental gene S100A6. The upregulation of GFAP and S100A6 genes in abnormal telencephalon was correlated with reduced DNA methylation levels in the promoter regions. The morphological, cellular, and molecular variations in the shape, regional specification, and cellular states of malformed telencephalon potentially participate in brain plasticity and previously reported behavior changes. Chickens with cerebral hernia might be an interesting and valuable disease model to further explore the recognition, diagnosis, and therapy of cerebral hernia development of crested chickens and other species.


Sign in / Sign up

Export Citation Format

Share Document