Abstract 026: Optical Recording of Cardiac Action Potentials from Human Induced Pluripotent Stem Cell Derived Cardiomyocytes

2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
B Alexander Yi ◽  
Joel M Kralj ◽  
Adam E Cohen

The electrically excitable properties of cardiomyocytes stem from the activity of ion channels that allow the coordinated entry of ions to generate cardiac action potentials. Disruptions in ion channel function either by drugs or gene mutations can lead to cardiac arrhythmias. The ability to screen drugs or gene mutations rapidly for effects on the cardiac action potential would be of interest for both drug discovery as well as for studies of ion channel function; however, the time-consuming and technically challenging nature of conventional patch clamping can limit the ability to perform high throughput screens. Archaerhodopsin3, or Arch, is an Archaebacterial variant of the membrane protein bacteriorhodopsin that binds a retinal fluorophore whose signal is rapidly responsive to changes in membrane potential. Here, we report the use of Arch to optically record action potentials from human induced pluripotent stem cell-derived cardiomyocytes. Human induced pluripotent stem cells that stably express Arch were generated and then differentiated into cardiomyocytes. As compared to patch clamping, Arch faithfully reproduces many of the key features of cardiac action potentials and may be a tool to be used for high throughput electrophysiological screens of cardiomyocytes.

2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
LouJin Song ◽  
Masayuki Yazawa

Human induced pluripotent stem cell (iPSC)-based model of cardiac diseases has been proved to be useful and valuable for identifying new therapeutics. However, the use of human iPSC-based model of cardiac diseases for drug screen is hampered by the high-cost and complexity of methods used for reprogramming, in vitro differentiation, and phenotyping. To address the limitations, we first optimized a protocol for reprogramming of human fibroblasts and keratinocytes into pluripotency using single lipofection and the episomal vectors in a 24-well plate format. This method allowed us to generate multiple lines of integration-free and feeder-free iPSCs from seven patients with cardiac diseases and three controls. Second, we differentiated human iPSCs derived from Timothy syndrome patients into cardiomyocytes using a monolayer differentiation method. We found that Timothy syndrome cardiomyocytes showed slower, irregular contractions and abnormal calcium handling compared to controls, which were consistent with previous reports using a retroviral method for reprogramming and using an embryoid body-based method for cardiac differentiation. Third, we developed an efficient approach for recording action potentials and calcium transients simultaneously in control and patient cardiomyocytes using genetically encoded fluorescent indicators, ArcLight and R-GECO1. The dual optical recordings enabled us to observe prolonged action potentials and abnormal calcium handling in Timothy syndrome cardiomyocytes. We confirmed that roscovitine rescued the phenotypes in Timothy syndrome cardiomyocytes and these findings were consistent with previous studies using conventional electrophysiological recordings and calcium imaging with dyes. The approaches using our optimized methods and dual optical recordings will improve iPSC applicability for disease modeling to test potential therapeutics. With those new approaches in hand, next we plan to use the iPSC-based model of Timothy syndrome to investigate novel molecules involved in the pathogenesis of Timothy syndrome and to screen and identify new therapeutic compounds for Timothy syndrome patients.


2020 ◽  
Vol 335 ◽  
pp. 108627 ◽  
Author(s):  
Madel Durens ◽  
Jonathan Nestor ◽  
Madeline Williams ◽  
Kevin Herold ◽  
Robert F. Niescier ◽  
...  

2020 ◽  
Author(s):  
Valentin Parat ◽  
Brigitte Onteniente ◽  
Julien Maruotti

AbstractIn this study, we describe a simple and straight-forward assay using induced pluripotent stem cell derived melanocytes and high-throughput flow cytometry, to screen and identify pigment regulating agents. The assays is based on the correlation between forward light-scatter characteristics and melanin content, with pigmented cells displaying high light absorption/low forward light-scatter, while the opposite is true for lowly pigmented melanocytes, as a result of genetic background or chemical treatments. Orthogonal validation is then performed by regular melanin quantification. Such approach was validated using a set of 80 small molecules, and yielded a confirmed hit. The assay described in this study may prove a useful tool to identify modulators of melanogenesis in human melanocytes.


2017 ◽  
Vol 26 (23) ◽  
pp. 1695-1705 ◽  
Author(s):  
Gary Duncan ◽  
Karl Firth ◽  
Vinoj George ◽  
Minh Duc Hoang ◽  
Andrew Staniforth ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document