Abstract 332: Mitochondrial Inner-Membrane Potential Instability Promotes Sarcolemmal Electrical Instability after Ischemia-Reperfusion in Monolayers of Cardiac Myocytes

2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Soroosh Solhjoo ◽  
Brian O’Rourke

Mitochondrial uncoupling due to oxidative stress can, through opening of sarcolemmal KATP channels, alter cellular electrical excitability, and it has been proposed that mitochondrial function is a major factor in arrhythmogenesis during ischemia-reperfusion. Here, we examine the effects of ischemia-reperfusion on mitochondrial inner membrane potential (ΔΨm) and corresponding changes in electrical excitability and wave propagation in monolayer cultures of neonatal rat ventricular myocytes. Changes in ΔΨm were observed using TMRM and changes in the sarcolemmal voltage were recorded with a 464-element photodiode array using di-4-ANEPPS. Ischemia was induced by covering the center part of the monolayer (D = 22 mm) with a coverslip (D = 15 mm). Cell contractions ceased after approximately 6 min of ischemia; however, electrical activity continued for 11.3 ± 4.2 min (N = 5). Amplitude and conduction velocity of the action potentials in the ischemic region decreased over the same time period. ΔΨm was lost in two phases: a reversible phase of partial depolarization, after 11.2 ± 1.3 min of ischemia, and a nonreversible phase, which happened after 30 ± 6 min of ischemia, during which the whole mitochondrial network of the myocyte became depolarized and the cells underwent contracture (N = 4). Reperfusion after the long ischemia resulted in only partial recovery and the observance of oscillations of ΔΨm in the mitochondrial network or rapid flickering of individual mitochondrial clusters and was associated with heterogeneous electrical recovery, and formation of wavelets and reentry (4/5 monolayers). In contrast, mitochondria fully recovered and reentry was rare (1/5 monolayers) for reperfusion after the short ischemia (10-12 min). 4’-chlorodiazepam, an inhibitor of inner membrane anion channels, stabilized mitochondrial function after the long ischemia, and prevented wavelets (5/5 monolayers) and reentry (4/5 monolayers). In conclusion, incomplete or unstable recovery of mitochondrial function after ischemia correlates with reentrant arrhythmias in monolayers of cardiac myocytes. Our findings suggest that stabilization of mitochondrial network dynamics is an important strategy for preventing ischemia/reperfusion-related arrhythmias.

2019 ◽  
Vol 25 (3) ◽  
pp. 240-250 ◽  
Author(s):  
Leila Hosseini ◽  
Manouchehr S. Vafaee ◽  
Reza Badalzadeh

Ischemic heart diseases are the major reasons for disability and mortality in elderly individuals. In this study, we tried to examine the combined effects of nicotinamide mononucleotide (NMN) preconditioning and melatonin postconditioning on cardioprotection and mitochondrial function in ischemia/reperfusion (I/R) injury of aged male rats. Sixty aged Wistar rats were randomly allocated to 5 groups, including sham, control, NMN-receiving, melatonin-receiving, and combined therapy (NMN+melatonin). Isolated hearts were mounted on Langendorff apparatus and then underwent 30-minue ligation of left anterior descending coronary artery to induce regional ischemic insult, followed by 60 minutes of reperfusion. Nicotinamide mononucleotide (100 mg/kg/d intraperitoneally) was administered for every other day for 28 days before I/R. Melatonin added to perfusion solution, 5 minutes prior to the reperfusion up to 15 minutes early reperfusion. Myocardial hemodynamic and infarct size (IS) were measured, and the left ventricles samples were obtained to evaluate cardiac mitochondrial function and oxidative stress markers. Melatonin postconditioning and NMN had significant cardioprotective effects in aged rats; they could improve hemodynamic parameters and reduce IS and lactate dehydrogenase release compared to those of control group. Moreover, pretreatment with NMN increased the cardioprotection by melatonin. All treatments reduced oxidative stress and mitochondrial reactive oxygen species (ROS) levels and improved mitochondrial membrane potential and restored NAD+/NADH ratio. The effects of combined therapy on reduction of mitochondrial ROS and oxidative status and improvement of mitochondrial membrane potential were greater than those of alone treatments. Combination of melatonin and NMN can be a promising strategy to attenuate myocardial I/R damages in aged hearts. Restoration of mitochondrial function may substantially contribute to this cardioprotection.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Qun Chen ◽  
Thomas Ross ◽  
Ying Hu ◽  
Edward J. Lesnefsky

Myocardial injury is increased in the aged heart following ischemia-reperfusion (ISC-REP) compared to adult hearts. Intervention at REP with ischemic postconditioning decreases injury in the adult heart by attenuating mitochondrial driven cell injury. Unfortunately, postconditioning is ineffective in aged hearts. Blockade of electron transport at the onset of REP with the reversible inhibitor amobarbital (AMO) decreases injury in adult hearts. We tested if AMO treatment at REP protects the aged heart via preservation of mitochondrial integrity. Buffer-perfused elderly Fischer 344 24 mo. rat hearts underwent 25 min global ISC and 30 min REP. AMO (2.5 mM) or vehicle was given for 3 min at the onset of REP. Subsarcolemmal (SSM) and interfibrillar (IFM) mitochondria were isolated after REP. Oxidative phosphorylation (OXPHOS) and mitochondrial inner membrane potential were measured. AMO treatment at REP decreased cardiac injury. Compared to untreated ISC-REP, AMO improved inner membrane potential in SSM and IFM during REP, indicating preserved inner membrane integrity. Thus, direct pharmacologic modulation of electron transport at REP protects mitochondria and decreases cardiac injury in the aged heart, even when signaling-induced pathways of postconditioning that are upstream of mitochondria are ineffective.


2009 ◽  
Vol 187 (7) ◽  
pp. 959-966 ◽  
Author(s):  
Brian Head ◽  
Lorena Griparic ◽  
Mandana Amiri ◽  
Shilpa Gandre-Babbe ◽  
Alexander M. van der Bliek

The mammalian mitochondrial inner membrane fusion protein OPA1 is controlled by complex patterns of alternative splicing and proteolysis. A subset of OPA1 isoforms is constitutively cleaved by YME1L. Other isoforms are not cleaved by YME1L, but they are cleaved when mitochondria lose membrane potential or adenosine triphosphate. In this study, we show that this inducible cleavage is mediated by a zinc metalloprotease called OMA1. We find that OMA1 small interfering RNA inhibits inducible cleavage, helps retain fusion competence, and slows the onset of apoptosis, showing that OMA1 controls OPA1 cleavage and function. We also find that OMA1 is normally cleaved from 60 to 40 kD by another as of yet unidentified protease. Loss of membrane potential causes 60-kD protein to accumulate, suggesting that OMA1 is attenuated by proteolytic degradation. We conclude that a proteolytic cascade controls OPA1. Inducible cleavage provides a mechanism for quality control because proteolytic inactivation of OPA1 promotes selective removal of defective mitochondrial fragments by preventing their fusion with the mitochondrial network.


2018 ◽  
Vol 46 (6) ◽  
pp. 2157-2169 ◽  
Author(s):  
Pan Pan ◽  
Xiaoting Wang ◽  
Dawei Liu

Septic cardiomyopathy is one of the most serious complications of sepsis or septic shock. Basic and clinical research has studied the mechanism of cardiac dysfunction for more than five decades. It has become clear that myocardial depression is not related to hypoperfusion. As the heart is highly dependent on abundant adenosine triphosphate (ATP) levels to maintain its contraction and diastolic function, impaired mitochondrial function is lethally detrimental to the heart. Research has shown that mitochondria play an important role in organ damage during sepsis. The mitochondria-related mechanisms in septic cardiomyopathy have been discussed in terms of restoring mitochondrial function. Mitochondrial uncoupling proteins located in the mitochondrial inner membrane can promote proton leakage across the mitochondrial inner membrane. Recent studies have demonstrated that proton leakage is the essential regulator of mitochondrial membrane potential and the generation of reactive oxygen species (ROS) and ATP. Other mechanisms involved in septic cardiomyopathy include mitochondrial ROS production and oxidative stress, mitochondria Ca2+ handling, mitochondrial DNA in sepsis, mitochondrial fission and fusion, mitochondrial biogenesis, mitochondrial gene regulation and mitochondria autophagy. This review will provide an overview of recent insights into the factors contributing to septic cardiomyopathy.


2014 ◽  
Vol 306 (7) ◽  
pp. C639-C647 ◽  
Author(s):  
Kurt D. Marshall ◽  
Michelle A. Edwards ◽  
Maike Krenz ◽  
J. Wade Davis ◽  
Christopher P. Baines

Cardiac injury induces myocyte apoptosis and necrosis, resulting in the secretion and/or release of intracellular proteins. Currently, myocardial injury can be detected by analysis of a limited number of biomarkers in blood or coronary artery perfusate. However, the complete proteomic signature of protein release from necrotic cardiac myocytes is unknown. Therefore, we undertook a proteomic-based study of proteins released from cultured neonatal rat cardiac myocytes in response to H2O2 (necrosis) or staurosporine (apoptosis) to identify novel specific markers of cardiac myocyte cell death. Necrosis and apoptosis resulted in the identification of 147 and 79 proteins, respectively. Necrosis resulted in a relative increase in the amount of many proteins including the classical necrotic markers lactate dehydrogenase (LDH), high-mobility group B1 (HMGB1), myoglobin, enolase, and 14-3-3 proteins. Additionally, we identified several novel markers of necrosis including HSP90, α-actinin, and Trim72, many of which were elevated over control levels earlier than classical markers of necrotic injury. In contrast, the majority of identified proteins remained at low levels during apoptotic cell death, resulting in no candidate markers for apoptosis being identified. Blotting for a selection of these proteins confirmed their release during necrosis but not apoptosis. We were able to confirm the presence of classical necrotic markers in the extracellular milieu of necrotic myocytes. We also were able to identify novel markers of necrotic cell death with relatively early release profiles compared with classical protein markers of necrosis. These results have implications for the discovery of novel biomarkers of necrotic myocyte injury, especially in the context of ischemia-reperfusion injury.


2008 ◽  
Vol 183 (7) ◽  
pp. 1213-1221 ◽  
Author(s):  
Stephan Kutik ◽  
Michael Rissler ◽  
Xue Li Guan ◽  
Bernard Guiard ◽  
Guanghou Shui ◽  
...  

The mitochondrial inner membrane contains different translocator systems for the import of presequence-carrying proteins and carrier proteins. The translocator assembly and maintenance protein 41 (Tam41/mitochondrial matrix protein 37) was identified as a new member of the mitochondrial protein translocator systems by its role in maintaining the integrity and activity of the presequence translocase of the inner membrane (TIM23 complex). Here we demonstrate that the assembly of proteins imported by the carrier translocase, TIM22 complex, is even more strongly affected by the lack of Tam41. Moreover, respiratory chain supercomplexes and the inner membrane potential are impaired by lack of Tam41. The phenotype of Tam41-deficient mitochondria thus resembles that of mitochondria lacking cardiolipin. Indeed, we found that Tam41 is required for the biosynthesis of the dimeric phospholipid cardiolipin. The pleiotropic effects of the translocator maintenance protein on preprotein import and respiratory chain can be attributed to its role in biosynthesis of mitochondrial cardiolipin.


Author(s):  
Kayleigh G. Marsh ◽  
Adrian Arrieta ◽  
Donna J. Thuerauf ◽  
Erik A. Blackwood ◽  
Lauren MacDonnell ◽  
...  

While peroxisomes have been extensively studied in other cell types, their presence and function have gone virtually unexamined in cardiac myocytes. Here, in neonatal rat ventricular myocytes (NRVM) we showed that several known peroxisomal proteins co-localize to punctate structures with a morphology typical of peroxisomes. Surprisingly, we found that the peroxisomal protein, fatty acyl-CoA reductase 1 (FAR1), was upregulated by chemical and pathophysiological ER stress induced by tunicamycin (TM) and simulated ischemia/reperfusion (sI/R), respectively. Moreover, FAR1 induction in NRVM was mediated by the ER stress-sensor, activating transcription factor 6 (ATF6). Functionally, FAR1 knockdown reduced myocyte death during oxidative stress induced by either sI/R or hydrogen peroxide (H2O2). Thus, Far1 is an ER stress-inducible gene, which encodes a protein that localizes to peroxisomes of cardiac myocytes, where it reduces myocyte viability during oxidative stress. Since FAR1 is critical for plasmalogen synthesis, these results imply that plasmalogens may exert maladaptive effects on the viability of myocytes exposed to oxidative stress.


Sign in / Sign up

Export Citation Format

Share Document