The peroxisomal enzyme, FAR1, is induced during ER stress in an ATF6-dependent manner in cardiac myocytes

Author(s):  
Kayleigh G. Marsh ◽  
Adrian Arrieta ◽  
Donna J. Thuerauf ◽  
Erik A. Blackwood ◽  
Lauren MacDonnell ◽  
...  

While peroxisomes have been extensively studied in other cell types, their presence and function have gone virtually unexamined in cardiac myocytes. Here, in neonatal rat ventricular myocytes (NRVM) we showed that several known peroxisomal proteins co-localize to punctate structures with a morphology typical of peroxisomes. Surprisingly, we found that the peroxisomal protein, fatty acyl-CoA reductase 1 (FAR1), was upregulated by chemical and pathophysiological ER stress induced by tunicamycin (TM) and simulated ischemia/reperfusion (sI/R), respectively. Moreover, FAR1 induction in NRVM was mediated by the ER stress-sensor, activating transcription factor 6 (ATF6). Functionally, FAR1 knockdown reduced myocyte death during oxidative stress induced by either sI/R or hydrogen peroxide (H2O2). Thus, Far1 is an ER stress-inducible gene, which encodes a protein that localizes to peroxisomes of cardiac myocytes, where it reduces myocyte viability during oxidative stress. Since FAR1 is critical for plasmalogen synthesis, these results imply that plasmalogens may exert maladaptive effects on the viability of myocytes exposed to oxidative stress.

2007 ◽  
Vol 85 (2) ◽  
pp. 243-250 ◽  
Author(s):  
Tara A. Bullard ◽  
Joshua L. Hastings ◽  
Jeffrey M. Davis ◽  
Thomas K. Borg ◽  
Robert L. Price

Protein kinase C (PKC) isozymes have been shown to play a role in mechanotransduction in a variety of cell types. We sought to identify the PKC isozymes involved in transducing mechanical (cyclic vs. static), direction and intensity of stretch by examining changes in protein expression and phosphorylation. We used a 3-dimensional culture system with aligned neonatal rat cardiac myocytes on silastic membranes. Myocytes were subjected to either cyclic stretch at 5 cycles/min or static stretch for a period of 24 h at intensities of 0%, 2.5%, 5%, or 10% of full membrane length. Stretch was applied in perpendicular or parallel directions to myocyte alignment. PKC δ was most sensitive to stretch applied perpendicular to myocyte alignment regardless of the nature of stretch, while phospho PKC δ T505 increased in response to static-perpendicular stretch. PKC ε expression was altered by cyclic stretch but not static stretch, while phospho PKC ε S719 remained unchanged. PKC α expression was not altered by stretch; however, phospho PKC α S657 increased in a dose-dependent manner following cyclic-perpendicular stretch. Our results indicate that changes in PKC expression and phosphorylation state may be a mechanism for cardiac myocytes to discriminate between the nature, direction, and intensity of mechanical stretch.


2002 ◽  
Vol 283 (2) ◽  
pp. H598-H605 ◽  
Author(s):  
Emily C. Rothstein ◽  
Kenneth L. Byron ◽  
Ryan E. Reed ◽  
Larry Fliegel ◽  
Pamela A. Lucchesi

Generation of reactive oxygen species (ROS) and intracellular Ca2+ overload are key mechanisms involved in ischemia-reperfusion (I/R)-induced myocardial injury. The relationship between I/R injury and Ca2+overload has not been fully characterized. The increase in Na+/H+ exchanger (NHE-1) activity observed during I/R injury is an attractive candidate to link increased ROS production with Ca2+ overload. We have shown that low doses of H2O2 increase NHE-1 activity in an extracellular signal-regulated kinase (ERK)-dependent manner. In this study, we examined the effect of low doses of H2O2 on intracellular Ca2+ in fura 2-loaded, spontaneously contracting neonatal rat ventricular myocytes. H2O2 induced a time- and concentration-dependent increase in diastolic intracellular Ca2+ concentration that was blocked by inhibition of ERK1/2 activation with 5 μM U-0126 (88%) or inhibition of NHE-1 with 5 μM HOE-642 (50%). Increased NHE activity was associated with phosphorylation of the NHE-1 carboxyl tail that was blocked by U-0126. These results suggest that H2O2 induced Ca2+ overload is partially mediated by NHE-1 activation secondary to phosphorylation of NHE-1 by the ERK1/2 MAP kinase pathway.


1998 ◽  
Vol 274 (1) ◽  
pp. C245-C252 ◽  
Author(s):  
Junsuke Igarashi ◽  
Masashi Nishida ◽  
Shiro Hoshida ◽  
Nobushige Yamashita ◽  
Hiroaki Kosaka ◽  
...  

The effects of nitric oxide (NO) produced by cardiac inducible NO synthase (iNOS) on myocardial injury after oxidative stress were examined. Interleukin-1β induced cultured rat neonatal cardiac myocytes to express iNOS. After induction of iNOS,l-arginine enhanced NO production in a concentration-dependent manner. Glutathione peroxidase (GPX) activity in myocytes was attenuated by elevated iNOS activity and by an NO donor, S-nitroso- N-acetyl-penicillamine (SNAP). Although NO production by iNOS did not induce myocardial injury, NO augmented release of lactate dehydrogenase from myocyte cultures after addition of H2O2(0.1 mM, 1 h). Inhibition of iNOS with Nω-nitro-l-arginine methyl ester ameliorated the effects of NO-enhancing treatments on myocardial injury and GPX activity. SNAP augmented the myocardial injury induced by H2O2. Inhibition of GPX activity with antisense oligodeoxyribonucleotide for GPX mRNA increased myocardial injury by H2O2. Results suggest that the induction of cardiac iNOS promotes myocardial injury due to oxidative stress via inactivation of the intrinsic antioxidant enzyme, GPX.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
John E Baker ◽  
Jidong Su ◽  
Stacy Koprowski ◽  
Anuradha Dhanasekaran ◽  
Tom P Aufderheide ◽  
...  

Thrombopoietin confers immediate protection against injury caused by ischemia/reperfusion in the rat heart at a dose that does not increase platelet levels. Eltrombopag is a small molecule agonist of the thrombopoietin receptor; the physiological target of thrombopoietin. Administration of thrombopoietin and eltrombopag result in a dose- and time-dependent increase in platelet counts in patients with thrombocytopenia. However, the ability of eltrombopag and thrombopoietin to immediately protect human cardiac myocytes against injury and the mechanisms underlying myocyte protection are not known. Human cardiac myocytes (7500 cells, n=10/group) were treated with eltrombopag (0.1- 30.0 μM) or thrombopoietin ( 0.1 - 30.0 ng/ml) and then subjected to 5 hours of hypoxia (95% N 2 /5%CO 2 ) and 16 hours of reoxygenation to determine their ability to confer resistance to necrotic and apoptotic myocardial injury . The thrombopoietin receptor (c-Mpl) was detected in unstimulated human cardiac myocytes by western blotting. Eltrombopag and thrombopoietin confer immediate protection to human cardiac myocytes against injury from hypoxia/reoxygenation by decreasing necrotic and apoptotic cell death in a concentration-dependent manner with an optimal concentration of 3 μM for eltrombopag and 1.0 ng/ml for thrombopoietin. The extent of protection conferred to cardiac myocytes with eltrombopag is equivalent to that of thrombopoietin. Eltrombopag and thrombopoietin activate multiple pro-survival pathways; inhibition of JAK-2 (AG-490, 10 μM), p38 MAPK (SB203580, 10 μM), p44/42 MAPK (PD98059, 10 μM), Akt/PI 3 kinase (Wortmannin, 100 nM), and src kinase (PP1, 20 μM) prior to and during hypoxia abolished cardiac myocyte protection by eltrombopag and thrombopoietin. These inhibitors had no effect on hypoxia/reoxygenation injury in myocytes when used alone. Eltrombopag and thrombopoietin may represent important and potent agents for immediately and substantially increasing protection of human cardiac myocytes, and may offer long-lasting benefit through activation of pro-survival pathways during ischemia.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Yoshiaki Ohyama ◽  
Toru Tanaka ◽  
Takehisa Shimizu ◽  
Hiroshi Doi ◽  
Norimichi Koitabashi ◽  
...  

Backgroud: Recent studies demonstrated non-hematopoietical effects of Erythropoietin (Epo) and its receptor (EpoR) in a variety of tissues including cardiovascular system. Epo treatment improves cardiac function in patients with heart failure and reduces infarct size after ischemia/reperfusion injury in the heart. However, little attention has been paid for the endogenous regulatory mechanisms regulating EpoR expression. In this study, we hypothesize that B-type natriuretic peptide upregulates EpoR gene expression in failing heart. Methods and Results: Wister rats underwent transverse aortic constriction surgery to induce hypertrophy. RT-PCR analyses of those rats showed that EpoR mRNA levels were increased in the left ventricle and positively correlated with the levels of BNP mRNA (n=10, r=0.67, p<0.05). Next we examined the expression of EpoR in human failing heart by using autopsy specimens and found that EpoR mRNA levels were significantly elevated in patients with dilated cardiomyopathy compared with those in normal heart. Immunohistochemistry of endomyocardial biopsy specimens of failing heart (n=54) showed that EpoR mRNA levels were correlated with severity of cardiac dysfunction estimated by diameter of cardiac chambers, pathomorphology, serum BNP concentration and functional class of New York Heart Association. Interestingly, stimulation of cultured neonatal rat cardiac myocytes with BNP, but not with hypertrophic reagents including endothelin I, angiotensin II and norepinephrine, significantly increased the EpoR mRNA levels in a time-dependent manner. Overexpression of cGMP-dependent protein kinase (PKG) increased EpoR transcript in cultured cardiac myocytes. BNP-induced EpoR expression was abrogated in the presence of KT5823, a specific inhibitor for PKG. Conclusion: These results suggest a role for BNP in mediating an induction of EpoR expression in failing myocardium and indicate that the cardiac EpoR gene is a target of cGMP/PKG signaling.


2002 ◽  
Vol 282 (1) ◽  
pp. H320-H327 ◽  
Author(s):  
Yukitaka Shizukuda ◽  
Peter M. Buttrick

We hypothesized that thromboxane A2 (TxA2) receptor stimulation directly induces apoptosis in adult cardiac myocytes. To investigate this, we exposed cultured adult rat ventricular myocytes (ARVM) to a TxA2 mimetic [1S-[1α,2α(Z),3β(1E,3S*),4α]]-7-[3-[3-hydroxy-4-(4-iodophenoxy)-1-butenyl]-7-oxabicyclo[2.2.1]hept-2-yl]-5-heptenoic acid (I-BOP) for 24 h. Stimulation with I-BOP induced apoptosis in a dose-dependent manner and was completely prevented by a TxA2 receptor antagonist, SQ-29548. We further investigated the role of protein kinase C (PKC) in this process. TxA2 stimulation resulted in membrane translocation of PKC-ζ but not PKC-α, -βII, -δ, and -ε at 3 min and 1 h. The activation of PKC-ζ by I-BOP was confirmed using an immune complex kinase assay. Treatment of ARVM with a cell-permeable PKC-ζ pseudosubstrate peptide (ζ-PS) significantly attenuated apoptosis by I-BOP. In addition, I-BOP treatment decreased baseline Akt activity and its decrease was reversed by treatment with ζ-PS. The inhibition of phosphatidylinositol 3-kinase upstream of Akt by wortmannin or LY-294002 abolished the antiapoptotic effect of ζ-PS. Therefore, our results suggest that the activation of PKC-ζ modulates TxA2 receptor-mediated apoptosis at least, in part, through Akt activity in adult cardiac myocytes.


2021 ◽  
Author(s):  
Hui Li ◽  
Shuaiwei Wang ◽  
Shuangshuang An ◽  
Biao Gao ◽  
Tieshan Teng ◽  
...  

Abstract Background Renal ischemia-reperfusion injury (IRI) is a major cause of acute kidney injury. Hydrogen sulfide (H2S) exerts a protective effect in renal IRI. The present study was carried out to investigate the effects of exogenous H2S on renal IRI by regulating autophagy in mice. Methods Mice were randomly assigned to control, IRI, and NaHS (28, 56 and 100 µmol/kg) groups. Renal IRI was induced by clamping the bilateral renal pedicles for with non-traumatic arterial clamp for 45 min and then reperfused for 24 h. Mice were administered intraperitoneally with NaHS 20 min prior to renal ischemia. Sham group mice underwent the same procedures without clamping. Serum and kidney tissues were harvested 24 h after reperfusion for functional, histological, oxidative stress, and autophagic determination. Results Compared with the control group, the concentrations of serum creatinine (Scr), blood urea nitrogen (BUN), and malondialdehyde (MDA), the protein levels of LC3II/I, Beclin-1, and P62, as well as the number of autophagosomes were significantly increased, but the activity of superoxide dismutase (SOD) was decreased after renal IRI. NaHS pretreatment dramatically attenuated renal IRI-induced renal dysfunction, histological changes, MDA concentration, and p62 expression in a dose-dependent manner. However, NaHS increased the SOD activity and the protein levels of LC3II/I and Beclin-1. Conclusions These results indicate that exogenous H2S protects the kidney from IRI through enhancement of autophagy and reduction of oxidative stress. Novel H2S donors could be developed in the treatment of renal IRI.


2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Soroosh Solhjoo ◽  
Brian O’Rourke

Mitochondrial uncoupling due to oxidative stress can, through opening of sarcolemmal KATP channels, alter cellular electrical excitability, and it has been proposed that mitochondrial function is a major factor in arrhythmogenesis during ischemia-reperfusion. Here, we examine the effects of ischemia-reperfusion on mitochondrial inner membrane potential (ΔΨm) and corresponding changes in electrical excitability and wave propagation in monolayer cultures of neonatal rat ventricular myocytes. Changes in ΔΨm were observed using TMRM and changes in the sarcolemmal voltage were recorded with a 464-element photodiode array using di-4-ANEPPS. Ischemia was induced by covering the center part of the monolayer (D = 22 mm) with a coverslip (D = 15 mm). Cell contractions ceased after approximately 6 min of ischemia; however, electrical activity continued for 11.3 ± 4.2 min (N = 5). Amplitude and conduction velocity of the action potentials in the ischemic region decreased over the same time period. ΔΨm was lost in two phases: a reversible phase of partial depolarization, after 11.2 ± 1.3 min of ischemia, and a nonreversible phase, which happened after 30 ± 6 min of ischemia, during which the whole mitochondrial network of the myocyte became depolarized and the cells underwent contracture (N = 4). Reperfusion after the long ischemia resulted in only partial recovery and the observance of oscillations of ΔΨm in the mitochondrial network or rapid flickering of individual mitochondrial clusters and was associated with heterogeneous electrical recovery, and formation of wavelets and reentry (4/5 monolayers). In contrast, mitochondria fully recovered and reentry was rare (1/5 monolayers) for reperfusion after the short ischemia (10-12 min). 4’-chlorodiazepam, an inhibitor of inner membrane anion channels, stabilized mitochondrial function after the long ischemia, and prevented wavelets (5/5 monolayers) and reentry (4/5 monolayers). In conclusion, incomplete or unstable recovery of mitochondrial function after ischemia correlates with reentrant arrhythmias in monolayers of cardiac myocytes. Our findings suggest that stabilization of mitochondrial network dynamics is an important strategy for preventing ischemia/reperfusion-related arrhythmias.


2019 ◽  
Vol 38 (7) ◽  
pp. 833-845
Author(s):  
X Zhou ◽  
Z Chen ◽  
W Zhong ◽  
R Yu ◽  
L He

In the development of dental fluorosis, oxidative stress is considered as the key mechanism. Endoplasmic reticulum (ER) stress can induce oxidative stress and activate the important antioxidative factor nuclear factor erythroid 2-related factor 2 (Nrf2) in a PKR-like ER kinase (PERK)-dependent manner, but combining ER stress and oxidative stress, the role of PERK-Nrf2 signaling pathway involved in fluoride-regulated ameloblasts is not fully defined. Here, we studied the effect of fluoride on PERK-Nrf2 signaling pathway in mouse ameloblasts. We found that low-dose and continuous fluoride exposure increased binding immunoglobulin protein expression and activated PERK–activating transcription factor 4 signaling pathway. Meanwhile, the expression of Nrf2 and its target genes (glutamylcysteine synthetase and glutathione S-transferase-P1) enhanced following ER stress. Tunicamycin increased the expression of PERK, leading to Nrf2 nuclear import, and tauroursodeoxycholate suppressed Nrf2 activation through PERK during ER stress, indicating that PERK activation is required for Nrf2 nuclear entry. Furthermore, tert-butylhydroquinone triggered the overexpression of Nrf2 to reduce ER stress, but luteolin inhibited Nrf2 nuclear localization to elevate ER stress. In summary, this study proved that fluoride under certain dose can induce ER stress and promote Nrf2 nuclear import via PERK activation and suggested that antioxidation mechanism mediated by PERK-Nrf2 can alleviate fluoride-induced ER stress effectively.


2013 ◽  
Vol 91 (12) ◽  
pp. 1064-1070 ◽  
Author(s):  
Hala Fahmy Zaki ◽  
Rania Mohsen Abdelsalam

Hepatic ischemia–reperfusion (IR) injury is a clinical problem that leads to cellular damage and organ dysfunction mediated mainly via production of reactive oxygen species and inflammatory cytokines. Vinpocetine has long been used in cerebrovascular disorders. This study aimed to explore the protective effect of vinpocetine in IR injury to the liver. Ischemia was induced in rats by clamping the common hepatic artery and portal vein for 30 min followed by 30 min of reperfusion. Serum transaminases and liver lactate dehydrogenase (LDH) activities, liver inflammatory cytokines, oxidative stress biomarkers, and liver histopathology were assessed. IR resulted in marked histopathology changes in liver tissues coupled with elevations in serum transaminases and liver LDH activities. IR also increased the production of liver lipid peroxides, nitric oxide, and inflammatory cytokines interleukin-1β and interleukin-6, in parallel with a reduction in reduced glutathione and interleukin-10 in the liver. Pretreatment with vinpocetine protected against liver IR-induced injury, in a dose-dependent manner, as evidenced by the attenuation of oxidative stress as well as inflammatory and liver injury biomarkers. The effects of vinpocetine were comparable with that of curcumin, a natural antioxidant, and could be attributed to its antioxidant and anti-inflammatory properties.


Sign in / Sign up

Export Citation Format

Share Document