Abstract 186: Superiority of Sacubitril/Valsartan Over Valsartan Alone in Attenuating Pressure Overload-induced Cardiac Fibrosis and Oxidative Stress

2019 ◽  
Vol 125 (Suppl_1) ◽  
Author(s):  
Xiaofei Li ◽  
Julie Braza ◽  
Ulrike Mende ◽  
Peng Zhang
2014 ◽  
Vol 32 (5) ◽  
pp. 1104-1114 ◽  
Author(s):  
Ernesto Martínez-Martínez ◽  
Raquel Jurado-López ◽  
María Valero-Muñoz ◽  
María Visitación Bartolomé ◽  
Sandra Ballesteros ◽  
...  

2009 ◽  
Vol 15 (7) ◽  
pp. S166
Author(s):  
Miho Kitamura ◽  
Miyuki Kobara ◽  
Akiko Furumori ◽  
Kazuki Noda ◽  
Tatsuya Shiraishi ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Shengqi Huo ◽  
Wei Shi ◽  
Haiyan Ma ◽  
Dan Yan ◽  
Pengcheng Luo ◽  
...  

Background. Inflammation and oxidative stress are involved in the initiation and progress of heart failure (HF). However, the role of the IL6/STAT3 pathway in the pressure overload-induced HF remains controversial. Methods and Results. Transverse aortic constriction (TAC) was used to induce pressure overload-HF in C57BL/6J mice. 18 mice were randomized into three groups (Sham, TAC, and TAC+raloxifene, n = 6 , respectively). Echocardiographic and histological results showed that cardiac hypertrophy, fibrosis, and left ventricular dysfunction were manifested in mice after TAC treatment of eight weeks, with aggravation of macrophage infiltration and interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) expression in the myocardium. TAC (four and eight weeks) elevated the phosphorylation of signal transducer and activator of transcription 3 (p-STAT3) and prohibitin2 (PHB2) protein expression. Importantly, IL-6/gp130/STAT3 inhibition by raloxifene alleviated TAC-induced myocardial inflammation, cardiac remodeling, and dysfunction. In vitro, we demonstrated cellular hypertrophy with STAT3 activation and oxidative stress exacerbation could be elicited by IL-6 (25 ng/mL, 48 h) in H9c2 myoblasts. Sustained IL-6 stimulation increased intracellular reactive oxygen species, repressed mitochondrial membrane potential (MMP), decreased intracellular content of ATP, and led to decreased SOD activity, an increase in iNOS protein expression, and increased protein expression of Pink1, Parkin, and Bnip3 involving in mitophagy, all of which were reversed by raloxifene. Conclusion. Inflammation and IL-6/STAT3 signaling were activated in TAC-induced HF in mice, while sustained IL-6 incubation elicited oxidative stress and mitophagy-related protein increase in H9c2 myoblasts, all of which were inhibited by raloxifene. These indicated IL-6/STAT3 signaling might be involved in the pathogenesis of myocardial hypertrophy and HF.


2021 ◽  
Vol 12 ◽  
Author(s):  
Nan Zhang ◽  
Hai-Han Liao ◽  
Hong Feng ◽  
Shan-Qi Mou ◽  
Wen-Jing Li ◽  
...  

Objectives: Sestrin2 (Sesn2) has been demonstrated to be a cysteine sulfinyl reductase and protects cells from multiple stress insults, including hypoxia, endoplasmic reticulum stress, and oxidative stress. However, the roles and mechanisms of Sesn2 in pressure overload-induced mouse cardiac hypertrophy have not been clearly clarified. This study intended to investigate whether sestrin2 (Sesn2) overexpression could prevent pressure overload-induced cardiac hypertrophy via an AMPKα2 dependent pathway through conditional knockout of AMPKα2.Methods and results: Sesn2 expression was significantly increased in mice hearts at 2 and 4 weeks after aortic banding (AB) surgery, but decreased to 60–70% of the baseline at 8 weeks. Sesn2 overexpression (at 3, 6, and 9 folds) showed little cardiac genetic toxicity in transgenic mice. Cardiac dysfunctions induced by pressure overload were attenuated by cardiomyocyte-specific Sesn2 overexpression when measured by echocardiography and hemodynamic analysis. Results of HE and PSR staining showed that Sesn2 overexpression significantly alleviated cardiac hypertrophy and fibrosis in mice hearts induced by pressure overload. Meanwhile, adenovirus-mediated-Sesn2 overexpression markedly suppressed angiotensin II-induced neonatal rat cardiomyocyte hypertrophy in vitro. Mechanistically, Sesn2 overexpression increased AMPKα2 phosphorylation but inhibited mTORC1 phosphorylation. The cardiac protections of Sesn2 overexpression were also via regulating oxidative stress by enhancing Nrf2/HO-1 signaling, restoring SOD activity, and suppressing NADPH activity. Particularly, we first proved the vital role of AMPKα2 in the regulation of Sesn2 with AMPKα2 knockout (AMPKα2-/-) mice and Sesn2 transgenic mice crossed with AMPKα2-/-, since Sesn2 overexpression failed to improve cardiac function, inhibit cardiac hypertrophy and fibrosis, and attenuate oxidative stress after AMPKα2 knockout.Conclusion: This study uniquely revealed that Sesn2 overexpression showed little genetic toxicity in mice hearts and inhibited mTORC1 activation and oxidative stress to protect against pressure overload-induced cardiac hypertrophy in an AMPKα2 dependent pathway. Thus, interventions through promoting Sesn2 expression might be a potential strategy for treating pathological cardiac hypertrophy and heart failure.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Ralph Alcendor ◽  
Chull Hong ◽  
Peiyong Zhai ◽  
Shumin Gao ◽  
Junichi Sadoshima

Sirt1, a class III histone deacetylase, extends the lifespan of many organisms. Longevity mechanisms usually confer stress resistance to organisms, and accumulation of stress resistance leads to lifespan extension. We have shown previously that Sirt1 is upregulated by stress up to 10 fold in the heart, and heart specific overexpression (up to 7.5 fold) of Sirt1 in mice not only suppresses histological/biochemical markers of aging, but also induces resistance to oxidative stress in the heart. We examined whether Sirt1 is protective against another pathologically relevant stimulus, namely pressure overload. Cardiac specific Sirt1 transgenic mice (Tg-Sirt1) from line #40, the line which has been shown to be protected against aging and oxidative stress, were subjected to transverse aortic constriction (TAC). Unexpectedly, at 10 days, the left ventricular (LV) ejection fraction (EF) in Tg-Sirt1 was significantly reduced (46 vs 71%, p<0.01), the LV end diastolic dimension was significantly increased (4.1 vs 3.4 mm, p<0.05), and the pressure gradient was reduced (92 vs 57 mmHg, p<0.05), possibly due to reduced LV contractility, in Tg-Sirt1 compared with non-transgenic (NTg) controls. At 4 weeks, LV weight/body weight (BW) (6.4 vs 4.7, p<0.05) and lung weight/BW (18.8 vs 7.0, p<0.05) were significantly increased in Tg-Sirt1, LV +dP/dt was significantly reduced (4617 vs 7513, p<0.05), and the LV end diastolic pressure was significantly elevated (13.6 vs 1.4 mmHg, p<0.05) in Tg-Sirt1 compared with NTg. These results suggest that Tg-Sirt1 mice develop more severe LV dysfunction than NTg in response to TAC. Tg-Sirt1 mice exhibited significantly less apoptosis (−50%, p<0.05) than NTg however, despite the development of LV dysfunction, suggesting that the LV dysfunction may be caused by apoptosis-independent mechanisms. The myocardial ATP content in Tg-Sirt1 was significantly less (−41%, p<0.05) than that in NTg after TAC. These results suggest that the cardioprotective effect of Sirt1 depends on the type of stress: although modest expression of Sirt1 confers resistance to aging and oxidative stress, it exacerbates heart failure in response to TAC through apoptosis-independent mechanisms possibly involving energy depletion.


Sign in / Sign up

Export Citation Format

Share Document