h9c2 myoblasts
Recently Published Documents


TOTAL DOCUMENTS

20
(FIVE YEARS 5)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Amir N Fatahian ◽  
Rajeshwary Ghosh ◽  
Karla M Pires ◽  
TARIQ MOSLEH ◽  
Vishaka Vinod ◽  
...  

Sequestosome1 (p62) is a multifunctional signaling molecule and an autophagy adaptor protein. Previous work demonstrated that mice with whole-body p62 knockout recapitulated many detrimental features of aging. Of note, these mice developed late onset obesity and systemic abnormalities that could have contributed to their aging phenotype. Multiple studies have also shown that cardiac dysfunction can be linked to an increase in oxidative stress. The Nrf2-Keap1 pathway is critical for protection against oxidative stress and p62 has been shown to interact with Keap1, thus allowing Nrf2 activation to induce anti-oxidant responses. However, the role of p62 in the heart is not well known. We tested the hypothesis that p62 plays an important homeostatic role in the heart through the regulation of redox homeostasis via the Nrf2-Keap1 pathway. Wild-type and cardiomyocytes-specific p62 knockout (cp62 KO) mice at 8 weeks and 60 weeks of age were used. At 8 weeks, cp62KO mice exhibited mild but significant contractile dysfunction compared to the wild-type controls. By 60 weeks, the KO mice developed cardiac hypertrophy, fibrosis and increased oxidative stress. cp62 KO hearts had decreased Nrf2 nuclear translocation and activation as evidenced by a 50% (p<0.005) reduction in the expression of the Nrf2 target glutathione S-transferase A4 ( Gsta2 ) gene. These findings were further validated by transcriptomic analysis followed by KEGG pathway analysis, which indicated that redox pathways were altered in the 60-week p62 null hearts. To examine the mechanisms involved in p62 regulation of Nrf2-Keap signaling, we utilized rat cardiac H9c2 myoblasts. Loss of p62 using p62 siRNA in H9c2 cells resulted in decreased Nrf2 levels and increased oxidative stress. These pathological consequences of suppressing p62 could be attributed to increased Nrf2 degradation via the proteasome. Together, these results reveal a previously uncharacterized role for p62 in the maintenance of cardiac redox signaling in the mouse heart.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Shengqi Huo ◽  
Wei Shi ◽  
Haiyan Ma ◽  
Dan Yan ◽  
Pengcheng Luo ◽  
...  

Background. Inflammation and oxidative stress are involved in the initiation and progress of heart failure (HF). However, the role of the IL6/STAT3 pathway in the pressure overload-induced HF remains controversial. Methods and Results. Transverse aortic constriction (TAC) was used to induce pressure overload-HF in C57BL/6J mice. 18 mice were randomized into three groups (Sham, TAC, and TAC+raloxifene, n = 6 , respectively). Echocardiographic and histological results showed that cardiac hypertrophy, fibrosis, and left ventricular dysfunction were manifested in mice after TAC treatment of eight weeks, with aggravation of macrophage infiltration and interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) expression in the myocardium. TAC (four and eight weeks) elevated the phosphorylation of signal transducer and activator of transcription 3 (p-STAT3) and prohibitin2 (PHB2) protein expression. Importantly, IL-6/gp130/STAT3 inhibition by raloxifene alleviated TAC-induced myocardial inflammation, cardiac remodeling, and dysfunction. In vitro, we demonstrated cellular hypertrophy with STAT3 activation and oxidative stress exacerbation could be elicited by IL-6 (25 ng/mL, 48 h) in H9c2 myoblasts. Sustained IL-6 stimulation increased intracellular reactive oxygen species, repressed mitochondrial membrane potential (MMP), decreased intracellular content of ATP, and led to decreased SOD activity, an increase in iNOS protein expression, and increased protein expression of Pink1, Parkin, and Bnip3 involving in mitophagy, all of which were reversed by raloxifene. Conclusion. Inflammation and IL-6/STAT3 signaling were activated in TAC-induced HF in mice, while sustained IL-6 incubation elicited oxidative stress and mitophagy-related protein increase in H9c2 myoblasts, all of which were inhibited by raloxifene. These indicated IL-6/STAT3 signaling might be involved in the pathogenesis of myocardial hypertrophy and HF.


Pharmacology ◽  
2021 ◽  
pp. 1-12
Author(s):  
Youli Tao ◽  
Hua Zhou ◽  
Lili Huang ◽  
Xiaoyin Xu ◽  
Yun Huang ◽  
...  

<b><i>Introduction:</i></b> Although oxidative stress has been demonstrated to mediate acute ethanol-induced changes in autophagy in the heart, the precise mechanism behind redox regulation in acute ethanol heart disease remains largely unknown. <b><i>Methods:</i></b> Wild-type C57BL/6 mice were intraperitoneally injected with ethanol (3 g/kg/day) for 3 consecutive days. The effects of ethanol on cultured primary cardiomyocytes and H9c2 myoblasts were also studied in vitro. Levels of autophagic flux, cardiac apoptosis and function, reactive oxygen species (ROS) accumulation, NOX4, and NOX2 were examined. The <i>NOX4</i> gene was knocked down with NOX4 siRNA. <b><i>Results:</i></b> In this study, we demonstrated that schisandrin B inhibited acute ethanol-induced autophagy and sequent apoptosis. In addition, schisandrin B treatment improved cardiac function in ethanol-treated mice. Furthermore, NOX4 protein expression was increased during acute ethanol exposure, and the upregulation of NOX4 was significantly inhibited by schisandrin B treatment. The knockdown of NOX4 prevented ROS accumulation, cell autophagy, and apoptosis. <b><i>Conclusion:</i></b> These results highlight that NOX4 is a critical mediator of ROS and elaborate the role of the NOX4/ROS axis in the effect of schisandrin B on autophagy and autophagy-mediated apoptosis in acute ethanol exposure, which suggests a therapeutic strategy for acute alcoholic cardiomyopathy.


2019 ◽  
Vol 116 (5) ◽  
pp. 1190-1200 ◽  
Author(s):  
Chieh Mei ◽  
Chih‐Wei Chao ◽  
Che‐Wei Lin ◽  
Shing Tak Li ◽  
Kuan‐Han Wu ◽  
...  

2018 ◽  
Vol 19 (12) ◽  
pp. 3704 ◽  
Author(s):  
Varsha Shete ◽  
Ning Liu ◽  
Yuzhi Jia ◽  
Navin Viswakarma ◽  
Janardan Reddy ◽  
...  

Phosphodiesterase 1C (PDE1C) is expressed in mammalian heart and regulates cardiac functions by controlling levels of second messenger cyclic AMP and cyclic GMP (cAMP and cGMP, respectively). However, molecular mechanisms of cardiac Pde1c regulation are currently unknown. In this study, we demonstrate that treatment of wild type mice and H9c2 myoblasts with Wy-14,643, a potent ligand of nuclear receptor peroxisome-proliferator activated receptor alpha (PPARα), leads to elevated cardiac Pde1C mRNA and cardiac PDE1C protein, which correlate with reduced levels of cAMP. Furthermore, using mice lacking either Pparα or cardiomyocyte-specific Med1, the major subunit of Mediator complex, we show that Wy-14,643-mediated Pde1C induction fails to occur in the absence of Pparα and Med1 in the heart. Finally, using chromatin immunoprecipitation assays we demonstrate that PPARα binds to the upstream Pde1C promoter sequence on two sites, one of which is a palindrome sequence (agcTAGGttatcttaacctagc) that shows a robust binding. Based on these observations, we conclude that cardiac Pde1C is a direct transcriptional target of PPARα and that Med1 may be required for the PPARα mediated transcriptional activation of cardiac Pde1C.


2013 ◽  
Vol 305 (12) ◽  
pp. H1736-H1751 ◽  
Author(s):  
Jin O-Uchi ◽  
Bong Sook Jhun ◽  
Stephen Hurst ◽  
Sara Bisetto ◽  
Polina Gross ◽  
...  

Ca+ influx to mitochondria is an important trigger for both mitochondrial dynamics and ATP generation in various cell types, including cardiac cells. Mitochondrial Ca2+ influx is mainly mediated by the mitochondrial Ca2+ uniporter (MCU). Growing evidence also indicates that mitochondrial Ca2+ influx mechanisms are regulated not solely by MCU but also by multiple channels/transporters. We have previously reported that skeletal muscle-type ryanodine receptor (RyR) type 1 (RyR1), which expressed at the mitochondrial inner membrane, serves as an additional Ca2+ uptake pathway in cardiomyocytes. However, it is still unclear which mitochondrial Ca2+ influx mechanism is the dominant regulator of mitochondrial morphology/dynamics and energetics in cardiomyocytes. To investigate the role of mitochondrial RyR1 in the regulation of mitochondrial morphology/function in cardiac cells, RyR1 was transiently or stably overexpressed in cardiac H9c2 myoblasts. We found that overexpressed RyR1 was partially localized in mitochondria as observed using both immunoblots of mitochondrial fractionation and confocal microscopy, whereas RyR2, the main RyR isoform in the cardiac sarcoplasmic reticulum, did not show any expression at mitochondria. Interestingly, overexpression of RyR1 but not MCU or RyR2 resulted in mitochondrial fragmentation. These fragmented mitochondria showed bigger and sustained mitochondrial Ca2+ transients compared with basal tubular mitochondria. In addition, RyR1-overexpressing cells had a higher mitochondrial ATP concentration under basal conditions and showed more ATP production in response to cytosolic Ca2+ elevation compared with nontransfected cells as observed by a matrix-targeted ATP biosensor. These results indicate that RyR1 possesses a mitochondrial targeting/retention signal and modulates mitochondrial morphology and Ca2+-induced ATP production in cardiac H9c2 myoblasts.


2013 ◽  
Vol 19 (1) ◽  
pp. 77-87 ◽  
Author(s):  
Eliot Sugarman ◽  
Ada Koo ◽  
Eigo Suyama ◽  
Manuel E. Ruidiaz ◽  
Susanne Heynen-Genel ◽  
...  

Excess caloric consumption leads to triacylglyceride (TAG) accumulation in tissues that do not typically store fat, such as skeletal muscle. This ectopic accumulation alters cells, contributing to the pathogenesis of metabolic syndrome, a major health problem worldwide. We developed a 1536-well assay to measure intracellular TAG accumulation in differentiating H9c2 myoblasts. For this assay, cells were incubated with oleic acid to stimulate TAG accumulation prior to adding compounds. We used Nile red as a fluorescent dye to quantify TAG content with a microplate reader. The cell nuclei were counterstained with DAPI nuclear stain to assess cell count and filter cytotoxic compounds. In parallel, we developed an image-based assay in H9c2 cells to measure lipid accumulation levels via high-content analysis, exploiting the dual-emission spectra characteristic of Nile red staining of neutral and phospholipids. Using both approaches, we successfully screened ~227,000 compounds from the National Institutes of Health library. The screening data from the plate reader and IC50 values correlated with that from the Opera QEHS cell imager. The 1536-well plate reader assay is a powerful high-throughout screening platform to identify potent inhibitors of TAG accumulation to better understand the molecular pathways involved in lipid metabolism that lead to lipotoxicity.


Sign in / Sign up

Export Citation Format

Share Document