A Variational Method for Learning Sparse and Overcomplete Representations

2001 ◽  
Vol 13 (11) ◽  
pp. 2517-2532 ◽  
Author(s):  
Mark Girolami

An expectation-maximization algorithm for learning sparse and overcomplete data representations is presented. The proposed algorithm exploits a variational approximation to a range of heavy-tailed distributions whose limit is the Laplacian. A rigorous lower bound on the sparse prior distribution is derived, which enables the analytic marginalization of a lower bound on the data likelihood. This lower bound enables the development of an expectation-maximization algorithm for learning the overcomplete basis vectors and inferring the most probable basis coefficients.

2019 ◽  
pp. 1471082X1989093 ◽  
Author(s):  
Antonio Punzo ◽  
Cristina Tortora

The multivariate contaminated normal (MCN) distribution represents a simple heavy-tailed generalization of the multivariate normal (MN) distribution to model elliptical contoured scatters in the presence of mild outliers (also referred to as ‘bad’ points herein) and automatically detect bad points. The price of these advantages is two additional parameters: proportion of good observations and degree of contamination. However, in a multivariate setting, only one proportion of good observations and only one degree of contamination may be limiting. To overcome this limitation, we propose a multiple scaled contaminated normal (MSCN) distribution. Among its parameters, we have an orthogonal matrix Γ. In the space spanned by the vectors (principal components) of Γ, there is a proportion of good observations and a degree of contamination for each component. Moreover, each observation has a posterior probability of being good with respect to each principal component. Thanks to this probability, the method provides directional robust estimates of the parameters of the nested MN and automatic directional detection of bad points. The term ‘directional’ is added to specify that the method works separately for each principal component. Mixtures of MSCN distributions are also proposed, and an expectation-maximization algorithm is used for parameter estimation. Real and simulated data are considered to show the usefulness of our mixture with respect to well-established mixtures of symmetric distributions with heavy tails.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Xuedong Chen ◽  
Qianying Zeng ◽  
Qiankun Song

An extension of some standard likelihood and variable selection criteria based on procedures of linear regression models under the skew-normal distribution or the skew-tdistribution is developed. This novel class of models provides a useful generalization of symmetrical linear regression models, since the random term distributions cover both symmetric as well as asymmetric and heavy-tailed distributions. A generalized expectation-maximization algorithm is developed for computing thel1penalized estimator. Efficacy of the proposed methodology and algorithm is demonstrated by simulated data.


2005 ◽  
Vol 25 (1_suppl) ◽  
pp. S678-S678
Author(s):  
Yasuhiro Akazawa ◽  
Yasuhiro Katsura ◽  
Ryohei Matsuura ◽  
Piao Rishu ◽  
Ansar M D Ashik ◽  
...  

Author(s):  
Stefan Thurner ◽  
Rudolf Hanel ◽  
Peter Klimekl

Phenomena, systems, and processes are rarely purely deterministic, but contain stochastic,probabilistic, or random components. For that reason, a probabilistic descriptionof most phenomena is necessary. Probability theory provides us with the tools for thistask. Here, we provide a crash course on the most important notions of probabilityand random processes, such as odds, probability, expectation, variance, and so on. Wedescribe the most elementary stochastic event—the trial—and develop the notion of urnmodels. We discuss basic facts about random variables and the elementary operationsthat can be performed on them. We learn how to compose simple stochastic processesfrom elementary stochastic events, and discuss random processes as temporal sequencesof trials, such as Bernoulli and Markov processes. We touch upon the basic logic ofBayesian reasoning. We discuss a number of classical distribution functions, includingpower laws and other fat- or heavy-tailed distributions.


Sign in / Sign up

Export Citation Format

Share Document