Two-State Membrane Potential Fluctuations Driven by Weak Pairwise Correlations

2004 ◽  
Vol 16 (11) ◽  
pp. 2351-2378 ◽  
Author(s):  
Andrea Benucci ◽  
Paul F.M.J. Verschure ◽  
Peter König

Physiological experiments demonstrate the existence of weak pairwise correlations of neuronal activity in mammalian cortex (Singer, 1993). The functional implications of this correlated activity are hotly debated (Roskiesetal., 1999).Nevertheless, it is generally considered a wide spread feature of cortical dynamics. In recent years, another line of research has attracted great interest: the observation of a bimodal distribution of the membrane potential defining up states and down states at the single cell level (Wilson & Kawaguchi, 1996; Steriade, Contreras, & Amzica, 1994; Contreras & Steriade, 1995; Steriade, 2001). Here we use a theoretical approach to demonstrate that the latter phenomenon is a natural consequence of the former. In particular, we show that weak pairwise correlations of the inputs to a compartmental model of a layer V pyramidal cell can induce bimodality in its membrane potential. We show how this relationship can account for the observed increase of the power in the γ frequency band during up states, as well as the increase in the standard deviation and fraction of time spent in the depolarized state (Anderson, Lampl, Reichova, Carandini, & Ferster, 2000). In order to quantify the relationship between the correlation properties of a cortical network and the bistable dynamics of single neurons, we introduce a number of new indices. Subsequently, we demonstrate that a quantitative agreement with the experimental data can be achieved, introducing voltage-dependent mechanisms in our neuronal model such as Ca2+- and Ca2+-dependent K+ channels. In addition, we show that the up states and down states of the membrane potential are dependent on the dendritic morphology of cortical neurons. Furthermore, bringing together network and single cell dynamics under a unified view allows the direct transfer of results obtained in one context to the other and suggests a new experimental paradigm: the use of specific intracellular analysis as a powerful tool to reveal the properties of the correlation structure present in the network dynamics.

2017 ◽  
Vol 118 (4) ◽  
pp. 2142-2155 ◽  
Author(s):  
Nathaniel C. Wright ◽  
Ralf Wessel

A primary goal of systems neuroscience is to understand cortical function, typically by studying spontaneous and stimulus-modulated cortical activity. Mounting evidence suggests a strong and complex relationship exists between the ongoing and stimulus-modulated cortical state. To date, most work in this area has been based on spiking in populations of neurons. While advantageous in many respects, this approach is limited in scope: it records the activity of a minority of neurons and gives no direct indication of the underlying subthreshold dynamics. Membrane potential recordings can fill these gaps in our understanding, but stable recordings are difficult to obtain in vivo. Here, we recorded subthreshold cortical visual responses in the ex vivo turtle eye-attached whole brain preparation, which is ideally suited for such a study. We found that, in the absence of visual stimulation, the network was “synchronous”; neurons displayed network-mediated transitions between hyperpolarized (Down) and depolarized (Up) membrane potential states. The prevalence of these slow-wave transitions varied across turtles and recording sessions. Visual stimulation evoked similar Up states, which were on average larger and less reliable when the ongoing state was more synchronous. Responses were muted when immediately preceded by large, spontaneous Up states. Evoked spiking was sparse, highly variable across trials, and mediated by concerted synaptic inputs that were, in general, only very weakly correlated with inputs to nearby neurons. Together, these results highlight the multiplexed influence of the cortical network on the spontaneous and sensory-evoked activity of individual cortical neurons. NEW & NOTEWORTHY Most studies of cortical activity focus on spikes. Subthreshold membrane potential recordings can provide complementary insight, but stable recordings are difficult to obtain in vivo. Here, we recorded the membrane potentials of cortical neurons during ongoing and visually evoked activity. We observed a strong relationship between network and single-neuron evoked activity spanning multiple temporal scales. The membrane potential perspective of cortical dynamics thus highlights the influence of intrinsic network properties on visual processing.


2007 ◽  
Vol 19 (3) ◽  
pp. 249-258 ◽  
Author(s):  
S HENRICKSON ◽  
U VONANDRIAN

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Natalina Moscatelli ◽  
Barbara Spagnolo ◽  
Marco Pisanello ◽  
Enrico Domenico Lemma ◽  
Massimo De Vittorio ◽  
...  

Cell Cycle ◽  
2010 ◽  
Vol 9 (8) ◽  
pp. 1504-1510 ◽  
Author(s):  
Ying V. Zhang ◽  
Brian S. White ◽  
David I. Shalloway ◽  
Tudorita Tumbar

2010 ◽  
Vol 104 (6) ◽  
pp. 3433-3438 ◽  
Author(s):  
Francois Windels ◽  
James W. Crane ◽  
Pankaj Sah

Slow oscillations (<1 Hz) in neural activity occur during sleep and quiet wakefulness in both animals and humans. Single-cell recordings in cortical neurons have shown that these oscillations are driven by a combination of excitatory and inhibitory synaptic inputs. During up-states, although the ratio between them varies between cells, excitation and inhibition follow similar time courses. Neurons in the basolateral amygdala (BLA) also show slow oscillations between the resting membrane potential (down-state) and depolarized potentials (up-states). Delivery of footshock during the down-state fully reproduces up-states in these cells. Here we report that up-states in BLA principal neurons up-states begin with an excitatory drive that is rapidly (within ∼50 ms) overwhelmed by inhibitory input. This excess of inhibitory drive is short lasting (300–400 ms), after which up-states are maintained by a tight balance between excitation and inhibition. This initial large inhibitory input restricts action potential generation and reduces the firing frequency of these cells. These results indicate that, in contrast to cortical neurons, up-states in BLA neurons show an initial period of strong cortically driven feed-forward inhibition. For the remainder of the up-state, feedback inhibition then acts to balance excitatory input.


1999 ◽  
Vol 81 (5) ◽  
pp. 1999-2016 ◽  
Author(s):  
Edward L. Bartlett ◽  
Philip H. Smith

Anatomic, intrinsic, and synaptic properties of dorsal and ventral division neurons in rat medial geniculate body. Presently little is known about what basic synaptic and cellular mechanisms are employed by thalamocortical neurons in the two main divisions of the auditory thalamus to elicit their distinct responses to sound. Using intracellular recording and labeling methods, we characterized anatomic features, membrane properties, and synaptic inputs of thalamocortical neurons in the dorsal (MGD) and ventral (MGV) divisions in brain slices of rat medial geniculate body. Quantitative analysis of dendritic morphology demonstrated that tufted neurons in both divisions had shorter dendrites, smaller dendritic tree areas, more profuse branching, and a greater dendritic polarization compared with stellate neurons, which were only found in MGD. Tufted neuron dendritic polarization was not as strong or consistent as earlier Golgi studies suggested. MGV and MGD cells had similar intrinsic properties except for an increased prevalence of a depolarizing sag potential in MGV neurons. The sag was the only intrinsic property correlated with cell morphology, seen only in tufted neurons in either division. Many MGV and MGD neurons received excitatory and inhibitory inferior colliculus (IC) inputs (designated IN/EX or EX/IN depending on excitation/inhibition sequence). However, a significant number only received excitatory inputs (EX/O) and a few only inhibitory (IN/O). Both MGV and MGD cells displayed similar proportions of response combinations, but suprathreshold EX/O responses only were observed in tufted neurons. Excitatory and inhibitory postsynaptic potentials (EPSPs and IPSPs) had multiple distinguishable amplitude levels implying convergence. Excitatory inputs activated α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-d-aspartate (NMDA) receptors the relative contributions of which were variable. For IN/EX cells with suprathreshold inputs, first-spike timing was independent of membrane potential unlike that of EX/O cells. Stimulation of corticothalamic (CT) and thalamic reticular nucleus (TRN) axons evoked a GABAA IPSP, EPSP, GABAB IPSP sequence in most neurons with both morphologies in both divisions. TRN IPSPs and CT EPSPs were graded in amplitude, again suggesting convergence. CT inputs activated AMPA and NMDA receptors. The NMDA component of both IC and CT inputs had an unusual voltage dependence with a detectable dl-2-amino-5-phosphonovaleric acid-sensitive component even below −70 mV. First-spike latencies of CT evoked action potentials were sensitive to membrane potential regardless of whether the TRN IPSP was present. Overall, our in vitro data indicate that reported regional differences in the in vivo responses of MGV and MGD cells to auditory stimuli are not well correlated with major differences in intrinsic membrane features or synaptic responses between cell types.


1992 ◽  
Vol 262 (5) ◽  
pp. L549-L554 ◽  
Author(s):  
D. F. Donnelly ◽  
C. Jiang ◽  
G. G. Haddad

Most mammalian neurons are known to be sensitive to oxygen availability, but the nature of the sensitivity is not well understood. Previous results have suggested that brain stem neurons may respond differently than cortical neurons during oxygen deprivation. We pursued this hypothesis by examining the time course of change in membrane potential (Vm) and input resistance (Rn) during periods of reduced oxygen availability in a tissue slice preparation. Since extracellular potassium is an important factor determining resting membrane potential, extracellular K+ activity, (K+o), was also measured. Adult rat neurons from three regions were recorded: hippocampal CA1 region, hypoglossal nucleus (XII), and dorsal vagal motor nucleus (DMNX). At the end of a 5-min hypoxic exposure, all neurons depolarized and this depolarization was greatest in XII (28.8 +/- 3.2 mV) compared with DMNX (17.8 +/- 3.7 mV) and CA1 (6.7 +/- 4.4 mV). K+o increased in all regions and was larger in DMNX (7.1 +/- 2.6 mM) and XII (5.3 +/- 2.1 mM) compared with CA1 (2.2 +/- 1.4 mM). During more severe oxygen deprivation (anoxia), neurons also depolarized at different rates with XII greater than DMNX greater than CA1. K+o increased markedly (28–36 mM) by 5 min into anoxia, and no statistical difference was observed between regions. From these results we conclude that 1) all cells tested were depolarized after 5 min of hypoxia; however, regional variability exists in the sensitivity to hypoxia; brain stem neurons depolarize faster than cortical neurons; 2) during anoxia, all brain stem and cortical neurons show a major depolarization, and 3) these differences in membrane potential cannot be solely attributed to changes in extracellular K+.


Sign in / Sign up

Export Citation Format

Share Document