scholarly journals Constrained Novelty Search: A Study on Game Content Generation

2015 ◽  
Vol 23 (1) ◽  
pp. 101-129 ◽  
Author(s):  
Antonios Liapis ◽  
Georgios N. Yannakakis ◽  
Julian Togelius

Novelty search is a recent algorithm geared toward exploring search spaces without regard to objectives. When the presence of constraints divides a search space into feasible space and infeasible space, interesting implications arise regarding how novelty search explores such spaces. This paper elaborates on the problem of constrained novelty search and proposes two novelty search algorithms which search within both the feasible and the infeasible space. Inspired by the FI-2pop genetic algorithm, both algorithms maintain and evolve two separate populations, one with feasible and one with infeasible individuals, while each population can use its own selection method. The proposed algorithms are applied to the problem of generating diverse but playable game levels, which is representative of the larger problem of procedural game content generation. Results show that the two-population constrained novelty search methods can create, under certain conditions, larger and more diverse sets of feasible game levels than current methods of novelty search, whether constrained or unconstrained. However, the best algorithm is contingent on the particularities of the search space and the genetic operators used. Additionally, the proposed enhancement of offspring boosting is shown to enhance performance in all cases of two-population novelty search.

2011 ◽  
Vol 328-330 ◽  
pp. 1881-1886
Author(s):  
Cen Zeng ◽  
Qiang Zhang ◽  
Xiao Peng Wei

Genetic algorithm (GA), a kind of global and probabilistic optimization algorithms with high performance, have been paid broad attentions by researchers world wide and plentiful achievements have been made.This paper presents a algorithm to develop the path planning into a given search space using GA in the order of full-area coverage and the obstacle avoiding automatically. Specific genetic operators (such as selection, crossover, mutation) are introduced, and especially the handling of exceptional situations is described in detail. After that, an active genetic algorithm is introduced which allows to overcome the drawbacks of the earlier version of Full-area coverage path planning algorithms.The comparison between some of the well-known algorithms and genetic algorithm is demonstrated in this paper. our path-planning genetic algorithm yields the best performance on the flexibility and the coverage. This meets the needs of polygon obstacles. For full-area coverage path-planning, a genotype that is able to address the more complicated search spaces.


Author(s):  
Abdullah Türk ◽  
Dursun Saral ◽  
Murat Özkök ◽  
Ercan Köse

Outfitting is a critical stage in the shipbuilding process. Within the outfitting, the construction of pipe systems is a phase that has a significant effect on time and cost. While cutting the pipes required for the pipe systems in shipyards, the cutting process is usually performed randomly. This can result in large amounts of trim losses. In this paper, we present an approach to minimize these losses. With the proposed method it is aimed to base the pipe cutting process on a specific systematic. To solve this problem, Genetic Algorithms (GA), which gives successful results in solving many problems in the literature, have been used. Different types of genetic operators have been used to investigate the search space of the problem well. The results obtained have proven the effectiveness of the proposed approach.


2009 ◽  
Vol 20 (07) ◽  
pp. 1063-1079
Author(s):  
ADIL AMIRJANOV

The formalism is presented for modeling of a genetic algorithm (GA) with an adjustment of a search space size. The formalism for modeling of GA with an adjustment of a search space size assumes that the environment and the population form a unique system. In this paper, the formalism is applied to a problem which exhibits an interesting dynamics reminiscent of stabilizing selection in population biology. The equations of motion was derived that expressed the macroscopic statistical properties of population after reproductive genetic operators and an adjustment of a search space size in terms of those prior to the operation. Predictions of the theory are compared with experiments and are shown to predict the average fitness and the variance fitness of the final population accurately.


2013 ◽  
Vol 300-301 ◽  
pp. 645-648 ◽  
Author(s):  
Yung Chien Lin

Evolutionary algorithms (EAs) are population-based global search methods. Memetic Algorithms (MAs) are hybrid EAs that combine genetic operators with local search methods. With global exploration and local exploitation in search space, MAs are capable of obtaining more high-quality solutions. On the other hand, mixed-integer hybrid differential evolution (MIHDE), as an EA-based search algorithm, has been successfully applied to many mixed-integer optimization problems. In this paper, a mixed-integer memetic algorithm based on MIHDE is developed for solving mixed-integer constrained optimization problems. The proposed algorithm is implemented and applied to the optimal design of batch processes. Experimental results show that the proposed algorithm can find a better optimal solution compared with some other search algorithms.


2000 ◽  
Vol 8 (3) ◽  
pp. 341-370 ◽  
Author(s):  
Ayed A. Salman ◽  
Kishan Mehrotra ◽  
Chilukuri K. Mohan

Problem-specific knowledge is often implemented in search algorithms using heuristics to determine which search paths are to be explored at any given instant. As in other search methods, utilizing this knowledge will more quickly lead a genetic algorithm (GA) towards better results. In many problems, crucial knowledge is not found in individual components, but in the interrelations between those components. For such problems, we develop an interrelation (linkage) based crossover operator that has the advantage of liberating GAs from the constraints imposed by the fixed representations generally chosen for problems. The strength of linkages between components of a chromosomal structure can be explicitly represented in a linkage matrix and used in the reproduction step to generate new individuals. For some problems, such a linkage matrix is known a priorifrom the nature of the problem. In other cases, the linkage matrix may be learned by successive minor adaptations during the execution of the evolutionary algorithm. This paper demonstrates the success of such an approach for several problems.


Author(s):  
Barathram Ramkumar ◽  
Marco P. Schoen ◽  
Feng Lin ◽  
Brian G. Williams

A new algorithm using Enhanced Continuous Tabu Search (ECTS) and genetic algorithm (GA) is proposed for parameter estimation problems. The proposed algorithm combines the respective strengths of ECTS and GA. The ECTS is a modified Tabu Search (TS), which has good search capabilities for large search spaces. In this work, the ECTS is used to define smaller search spaces, which are used in a second stage by a GA to find the respective local minima. The ECTS covers the global search space by using a TS concept called diversification and then selects the most promising regions in the search space. Once the promising areas in the search space are identified, the proposed algorithm employs another TS concept called intensification in order to search the promising area thoroughly. The proposed algorithm is tested with benchmark multimodal functions for which the global minimum is known. In addition, the novel algorithm is used for parameter estimation problems, where standard estimation algorithms encounter problems estimating the parameters in an un-biased fashion. The simulation results indicate the effectiveness of the proposed hybrid algorithm.


2004 ◽  
Vol 12 (4) ◽  
pp. 461-493 ◽  
Author(s):  
Jonathan E. Rowe ◽  
Michael D. Vose ◽  
Alden H. Wright

In a previous paper (Rowe et al., 2002), aspects of the theory of genetic algorithms were generalised to the case where the search space, Ω, had an arbitrary group action defined on it. Conditions under which genetic operators respect certain subsets of Ω were identified, leading to a generalisation of the termschema. In this paper, search space groups with more detailed structure are examined. We define the class of structural crossover operators that respect certain schemata in these groups, which leads to a generalised schema theorem. Recent results concerning the Fourier (or Walsh) transform are generalised. In particular, it is shown that the matrix group representing Ω can be simultaneously diagonalised if and only if Ω is Abelian. Some results concerning structural crossover and mutation are given for this case.


2012 ◽  
Vol 43 ◽  
pp. 523-570 ◽  
Author(s):  
C. Hernandez ◽  
J. A. Baier

Heuristics used for solving hard real-time search problems have regions with depressions. Such regions are bounded areas of the search space in which the heuristic function is inaccurate compared to the actual cost to reach a solution. Early real-time search algorithms, like LRTA*, easily become trapped in those regions since the heuristic values of their states may need to be updated multiple times, which results in costly solutions. State-of-the-art real-time search algorithms, like LSS-LRTA* or LRTA*(k), improve LRTA*'s mechanism to update the heuristic, resulting in improved performance. Those algorithms, however, do not guide search towards avoiding depressed regions. This paper presents depression avoidance, a simple real-time search principle to guide search towards avoiding states that have been marked as part of a heuristic depression. We propose two ways in which depression avoidance can be implemented: mark-and-avoid and move-to-border. We implement these strategies on top of LSS-LRTA* and RTAA*, producing 4 new real-time heuristic search algorithms: aLSS-LRTA*, daLSS-LRTA*, aRTAA*, and daRTAA*. When the objective is to find a single solution by running the real-time search algorithm once, we show that daLSS-LRTA* and daRTAA* outperform their predecessors sometimes by one order of magnitude. Of the four new algorithms, daRTAA* produces the best solutions given a fixed deadline on the average time allowed per planning episode. We prove all our algorithms have good theoretical properties: in finite search spaces, they find a solution if one exists, and converge to an optimal after a number of trials.


2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Tao Sun ◽  
Ming-hai Xu

Quantum-behaved particle swarm optimization (QPSO) algorithm is a variant of the traditional particle swarm optimization (PSO). The QPSO that was originally developed for continuous search spaces outperforms the traditional PSO in search ability. This paper analyzes the main factors that impact the search ability of QPSO and converts the particle movement formula to the mutation condition by introducing the rejection region, thus proposing a new binary algorithm, named swarm optimization genetic algorithm (SOGA), because it is more like genetic algorithm (GA) than PSO in form. SOGA has crossover and mutation operator as GA but does not need to set the crossover and mutation probability, so it has fewer parameters to control. The proposed algorithm was tested with several nonlinear high-dimension functions in the binary search space, and the results were compared with those from BPSO, BQPSO, and GA. The experimental results show that SOGA is distinctly superior to the other three algorithms in terms of solution accuracy and convergence.


2003 ◽  
Vol 1831 (1) ◽  
pp. 210-218 ◽  
Author(s):  
Richard Balling ◽  
Michael Lowry ◽  
Mitsuru Saito

A new approach to regional land use and transportation planning, which uses a genetic algorithm as an integrated optimization tool, is presented. The approach is illustrated by applying it to the Wasatch Front Metropolitan Region, which consists of four counties in the state of Utah. This genetic algorithm–-based approach was applied earlier to the twin cities of Provo and Orem in Utah, but here it is adapted to regional planning. Three issues make regional planning particularly difficult: ( a) individual cities have significant planning autonomy, ( b) the search space of possible plans is immense, and ( c) preferences between competing objectives vary among stakeholders. The approach used here addresses the first issue by the way the problem is formulated. The second issue is addressed with a genetic algorithm. Such algorithms are particularly well suited to problems with large search spaces. The third issue is addressed by using a multiobjective fitness function in the genetic algorithm. It was found that a genetic algorithm could produce a set of nondominated future land use scenarios and street plans for a region, from which regional planners can make a selection. Execution of the algorithm to produce 100 plans per generation for 100 generations took about 4 days with a high-end personal computer. Interesting trends for reducing change and traffic congestion were discovered.


Sign in / Sign up

Export Citation Format

Share Document