Reference Frame of Human Medial Intraparietal Cortex in Visually Guided Movements

2012 ◽  
Vol 24 (1) ◽  
pp. 171-182 ◽  
Author(s):  
Kenji Ogawa ◽  
Toshio Inui

Visually guided reaching involves the transformation of a spatial position of a target into a body-centered reference frame. Although involvement of the posterior parietal cortex (PPC) has been proposed in this visuomotor transformation, it is unclear whether human PPC uses visual or body-centered coordinates in visually guided movements. We used a delayed visually guided reaching task, together with an fMRI multivoxel pattern analysis, to reveal the reference frame used in the human PPC. In experiments, a target was first presented either to the left or to the right of a fixation point. After a delay period, subjects moved a cursor to the position where the target had previously been displayed using either a normal or a left–right reversed mouse. The activation patterns of normal sessions were first used to train the classifier to predict movement directions. The activity patterns of the reversed sessions were then used as inputs to the decoder to test whether predicted directions correspond to actual movement directions in either visual or body-centered coordinates. When the target was presented before actual movement, the predicted direction in the medial intraparietal cortex was congruent with the actual movement in the body-centered coordinates, although the averaged signal intensities were not significantly different between two movement directions. Our results indicate that the human medial intraparietal cortex uses body-centered coordinates to encode target position or movement directions, which are crucial for visually guided movements.

2020 ◽  
Vol 31 (1) ◽  
pp. 267-280
Author(s):  
Rossella Breveglieri ◽  
Annalisa Bosco ◽  
Sara Borgomaneri ◽  
Alessia Tessari ◽  
Claudio Galletti ◽  
...  

Abstract Accumulating evidence supports the view that the medial part of the posterior parietal cortex (mPPC) is involved in the planning of reaching, but while plenty of studies investigated reaching performed toward different directions, only a few studied different depths. Here, we investigated the causal role of mPPC (putatively, human area V6A–hV6A) in encoding depth and direction of reaching. Specifically, we applied single-pulse transcranial magnetic stimulation (TMS) over the left hV6A at different time points while 15 participants were planning immediate, visually guided reaching by using different eye-hand configurations. We found that TMS delivered over hV6A 200 ms after the Go signal affected the encoding of the depth of reaching by decreasing the accuracy of movements toward targets located farther with respect to the gazed position, but only when they were also far from the body. The effectiveness of both retinotopic (farther with respect to the gaze) and spatial position (far from the body) is in agreement with the presence in the monkey V6A of neurons employing either retinotopic, spatial, or mixed reference frames during reach plan. This work provides the first causal evidence of the critical role of hV6A in the planning of visually guided reaching movements in depth.


Concussion ◽  
2019 ◽  
Vol 4 (3) ◽  
pp. CNC64
Author(s):  
Christopher Fueger ◽  
Lauren E Sergio ◽  
Sabine Heuer ◽  
Labina Petrovska ◽  
Wendy E Huddleston

Aim: We examined the long-term effects of concussions in young adult females on visuomotor behavior during a visually-guided reaching task of various complexities. Materials & methods: 20 females with a history of longer than 6 months since a concussion and 20 healthy females quickly and accurately performed a delayed reach to a previously cued target. Results: As both cognitive and motor load increased, task performance decreased for both groups (p < 0.05). However, contrary to our primary hypothesis, no differences in task performance were found between the two experimental groups (p > 0.05). Conclusion: The young adult females with a remote history of concussion demonstrated no deficits in visuomotor behavior on an attention-mediated reaching task as compared with control participants.


2010 ◽  
Vol 103 (4) ◽  
pp. 2234-2254 ◽  
Author(s):  
Kim Lajoie ◽  
Jacques-Étienne Andujar ◽  
Keir Pearson ◽  
Trevor Drew

We tested the hypothesis that area 5 of the posterior parietal cortex (PPC) contributes to interlimb coordination in locomotor tasks requiring visual guidance by recording neuronal activity in this area in three cats in two locomotor paradigms. In the first paradigm, cats were required to step over obstacles attached to a moving treadmill belt. We recorded 47 neurons that discharged in relationship to the hindlimbs. Of these, 31/47 discharged between the passage of the fore- and hindlimbs (FL-HL cells) over the obstacle. The activity of most of these neurons (25/31) was related to the fore- and hindlimb contralateral to the recording site when the contralateral forelimb was the first to pass over the obstacle. In many cells, discharge activity was limb-independent in that it was better related to the ipsilateral limbs when they were the first to step over the obstacle. The other 16/47 neurons discharged only when the hindlimbs stepped over the obstacle with the majority of these (12/16) discharging between the passage of the two hindlimbs over the obstacle. We tested 15/47 cells, including 11/47 FL-HL cells, in a second paradigm in which cats stepped over an obstacle on a walkway. Discharge activity in all of these cells was significantly modulated when the cat stepped over the obstacle and remained modified for periods of ≤1 min when forward progress of the cat was delayed with either the fore- and hindlimbs, or the two hindlimbs, straddling the obstacle. We suggest that neurons in area 5 of the PPC contribute to interlimb coordination during locomotion by estimating the spatial and temporal attributes of the obstacle with respect to the body. We further suggest that the discharge observed both during the steps over the obstacle and in the delayed locomotor paradigm is a neuronal correlate of working memory.


2010 ◽  
Vol 104 (6) ◽  
pp. 3494-3509 ◽  
Author(s):  
Barbara Heider ◽  
Anushree Karnik ◽  
Nirmala Ramalingam ◽  
Ralph M. Siegel

Visually guided hand movements in primates require an interconnected network of various cortical areas. Single unit firing rate from area 7a and dorsal prelunate (DP) neurons of macaque posterior parietal cortex (PPC) was recorded during reaching movements to targets at variable locations and under different eye position conditions. In the eye position–varied task, the reach target was always foveated; thus eye position varied with reach target location. In the retinal-varied task, the monkey reached to targets at variable retinotopic locations while eye position was kept constant in the center. Spatial tuning was examined with respect to temporal (task epoch) and contextual (task condition) aspects, and response fields were compared. The analysis showed distinct tuning types. The majority of neurons changed their gain field tuning and retinotopic tuning between different phases of the task. Between the onset of visual stimulation and the preparatory phase (before the go signal), about one half the neurons altered their firing rate significantly. Spatial response fields during preparation and initiation epochs were strongly influenced by the task condition (eye position varied vs. retinal varied), supporting a strong role of eye position during visually guided reaching. DP neurons, classically considered visual, showed reach related modulation similar to 7a neurons. This study shows that both area 7a and DP are modulated during reaching behavior in primates. The various tuning types in both areas suggest distinct populations recruiting different circuits during visually guided reaching.


Sign in / Sign up

Export Citation Format

Share Document