Imaging Fatigue of Interference Control Reveals the Neural Basis of Executive Resource Depletion

2013 ◽  
Vol 25 (3) ◽  
pp. 338-351 ◽  
Author(s):  
Jonas Persson ◽  
Anne Larsson ◽  
Patricia A. Reuter-Lorenz

Executive control coordinates, prioritizes, and selects task-relevant representations under conditions of conflict. Behavioral evidence has documented that executive resources are separable, finite, and can be temporarily depleted; however, the neural basis for such resource limits are largely unknown. Here, we investigate the neural correlates underlying the fatigue or depletion of interference control, an executive process hypothesized to mediate competition among candidate memory representations. Using a pre/post continuous acquisition fMRI design, we demonstrate that, compared with a nondepletion control group, the depletion group showed a fatigue-induced performance deficit that was specific to interference control and accompanied by a left-to-right shift in the network of active regions. Specifically, we observed decreased BOLD signal in the left inferior frontal gyrus (IFG), striatum, and the cerebellum, along with a corresponding increase in right hemisphere regions including the IFG, insular, and temporal cortex. Depletion-related changes in activation magnitude correlated with behavioral changes, suggesting that decreased recruitment of task-relevant regions, including left IFG, contributes to impaired interference control. These results provide new evidence about the brain dynamics of “process-specific” fatigue and suggest that depletion may pose a significant limitation on the cognitive and neural resources available for executive control.

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Mi Li ◽  
Hongpei Xu ◽  
Shengfu Lu

Background. In the past, studies on the lateralization of the left and right hemispheres of the brain suggested that depression is dominated by the right hemisphere of the brain, but the neural basis of this theory remains unclear. Method. Functional magnetic resonance imaging of the brain was performed in 22 depressive patients and 15 healthy controls. The differences in the mean values of the regional homogeneity (ReHo) of two groups were compared, and the low-frequency amplitudes of these differential brain regions were compared. Results. The results show that compared with healthy subjects, depressive patients had increased ReHo values in the right superior temporal gyrus, right middle temporal gyrus, left inferior temporal gyrus, left middle temporal gyrus, right middle frontal gyrus, triangular part of the right inferior frontal gyrus, orbital part of the right inferior frontal gyrus, right superior occipital gyrus, right middle occipital gyrus, bilateral anterior cingulate, and paracingulate gyri; reduced ReHo values were seen in the right fusiform gyrus, left middle occipital gyrus, left lingual gyrus, and left inferior parietal except in the supramarginal and angular gyri. Conclusions. The results show that regional homogeneity mainly occurs in the right brain, and the overall performance of the brain is such that right hemisphere synchronization is enhanced while left hemisphere synchronization is weakened. ReHo abnormalities in the resting state can predict abnormalities in individual neurological activities that reflect changes in the structure and function of the brain; abnormalities shown with this indicator are the neuronal basis for the phenomenon that the right hemisphere of the brain has a dominant effect on depression.


2009 ◽  
Vol 21 (6) ◽  
pp. 1193-1203 ◽  
Author(s):  
James P. Coxon ◽  
Cathy M. Stinear ◽  
Winston D. Byblow

Converging lines of evidence show that volitional movement prevention depends on the right prefrontal cortex (PFC), especially the right inferior frontal gyrus (IFG). Selective movement prevention refers to the rapid prevention of some, but not all, movement. It is unknown whether the IFG, or other prefrontal areas, are engaged when movement must be selectively prevented, and whether additional cortical areas are recruited. We used rapid event-related fMRI to investigate selective and nonselective movement prevention during performance of a temporally demanding anticipatory task. Most trials involved simultaneous index and middle finger extension. Randomly interspersed trials required the prevention of one, or both, finger movements. Regions of the right hemisphere, including the IFG, were active for selective and nonselective movement prevention, with an overlap in the inferior parietal cortex and the middle frontal gyrus. Selective movement prevention caused a significant delay in movement initiation of the other digit. These trials were associated with activation of the medial frontal cortex. The results provide support for a right-hemisphere network that temporarily “brakes” all movement preparation. When movement is selectively prevented, the supplementary motor cortex (SMA/pre-SMA) may participate in conflict resolution and subsequent reshaping of excitatory drive to the motor cortex.


2010 ◽  
Vol 22 (8) ◽  
pp. 1739-1753 ◽  
Author(s):  
Prin X. Amorapanth ◽  
Page Widick ◽  
Anjan Chatterjee

Studies in semantics traditionally focus on knowledge of objects. By contrast, less is known about how objects relate to each other. In an fMRI study, we tested the hypothesis that the neural processing of categorical spatial relations between objects is distinct from the processing of the identity of objects. Attending to the categorical spatial relations compared with attending to the identity of objects resulted in greater activity in superior and inferior parietal cortices (especially on the left) and posterior middle frontal cortices bilaterally. In an accompanying lesion study, we tested the hypothesis that comparable areas would be necessary to represent categorical spatial relations and that the hemispheres differ in their biases to process categorical or coordinate spatial relations. Voxel-based lesion symptom mapping results were consistent with the fMRI observations. Damage to a network comprising left inferior frontal, supramarginal, and angular gyri resulted in behavioral impairment on categorical spatial judgments. Homologous right brain damage also produced such deficits, albeit less severely. The reverse pattern was observed for coordinate spatial processing. Right brain damage to the middle temporal gyrus produced more severe deficits than left hemisphere damage. Additional analyses suggested that some areas process both kinds of spatial relations conjointly and others distinctly. The left angular and inferior frontal gyrus processes coordinate spatial information over and above the categorical processing. The anterior superior temporal gyrus appears to process categorical spatial information uniquely. No areas within the right hemisphere processed categorical spatial information uniquely. Taken together, these findings suggest that the functional neuroanatomy of categorical and coordinate processing is more nuanced than implied by a simple hemispheric dichotomy.


2000 ◽  
Vol 12 (5) ◽  
pp. 753-762 ◽  
Author(s):  
Eamon McCrory ◽  
Uta Frith ◽  
Nicola Brunswick ◽  
Cathy Price

Eight dyslexic subjects, impaired on a range of tasks requiring phonological processing, were matched for age and general ability with six control subjects. Participants were scanned using positron emission tomography (PET) during three conditions: repeating real words, repeating pseudowords, and rest. In both groups, speech repetition relative to rest elicited widespread bilateral activation in areas associated with auditory processing of speech; there were no significant differences between words and pseudowords. However, irrespective of word type, the dyslexic group showed less activation than the control group in the right superior temporal and right post-central gyri and also in the left cerebellum. Notably, the right anterior superior temporal cortex (Brodmann's area 22 [BA 22]) was less activated in each of the eight dyslexic subjects, compared to each of the six control subjects. This deficit appears to be specific to auditory repetition as it was not detected in a previous study of reading which used the same sets of stimuli (Brunswick, N., McCrory, E., Price, C., Frith, C.D., & Frith, U. [1999]. Explicit and implicit processing of words and pseudowords by adult developmental dyslexics: A search for Wernicke's Wortschatz? Brain, 122, 1901-1917). This implies that the observed neural manifestation of developmental dyslexia is task-specific (i.e., functional rather than structural). Other studies of normal subjects indicate that attending to the phonetic structure of speech leads to a decrease in right-hemisphere processing. Lower right hemisphere activation in the dyslexic group may therefore indicate less processing of non-phonetic aspects of speech, allowing greater salience to be accorded to phonological aspects of attended speech.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1135
Author(s):  
Aleksandra Janowska ◽  
Brianna Balugas ◽  
Matthew Pardillo ◽  
Victoria Mistretta ◽  
Katherine Chavarria ◽  
...  

While the desire to uncover the neural correlates of consciousness has taken numerous directions, self-face recognition has been a constant in attempts to isolate aspects of self-awareness. The neuroimaging revolution of the 1990s brought about systematic attempts to isolate the underlying neural basis of self-face recognition. These studies, including some of the first fMRI (functional magnetic resonance imaging) examinations, revealed a right-hemisphere bias for self-face recognition in a diverse set of regions including the insula, the dorsal frontal lobe, the temporal parietal junction, and the medial temporal cortex. In this systematic review, we provide confirmation of these data (which are correlational) which were provided by TMS (transcranial magnetic stimulation) and patients in which direct inhibition or ablation of right-hemisphere regions leads to a disruption or absence of self-face recognition. These data are consistent with a number of theories including a right-hemisphere dominance for self-awareness and/or a right-hemisphere specialization for identifying significant social relationships, including to oneself.


2020 ◽  
Author(s):  
James D. Stefaniak ◽  
Reem S. W. Alyahya ◽  
Matthew A. Lambon Ralph

AbstractAphasia recovery post-stroke is classically and most commonly hypothesised to rely on regions that were not involved in language premorbidly, through ‘neurocomputational invasion’ or engagement of ‘quiescent homologues’. Contemporary accounts have suggested, instead, that recovery might be supported by under-utilised areas of the premorbid language network, which are downregulated in health to save neural resources (‘variable neurodisplacement’). Despite the importance of understanding the neural bases of language recovery clinically and theoretically, there is no consensus as to which specific regions are activated more consistently in post-stroke aphasia (PSA) than healthy individuals. Accordingly, we performed an Activation Likelihood Estimation analysis of language functional neuroimaging studies in PSA and linked control data. We obtained coordinate-based functional neuroimaging data for 481 individuals with aphasia following left hemisphere stroke (one third of which was previously unpublished) and for 530 healthy controls. Instead of the language network expanding by activating novel right hemisphere regions ‘de novo’ post-stroke, as would be predicted by neurocomputational invasion/quiescent homologue engagement mechanisms of recovery, we found that multiple regions throughout both hemispheres were consistently activated during language tasks in PSA and controls. Multiple undamaged regions were less consistently activated in PSA than controls, including domain-general regions of medial superior frontal cortex and right fronto-temporal cortex. In the reverse direction, the right anterior insula and inferior frontal gyrus were more consistently activated in PSA than controls, particularly for executively-demanding comprehension tasks. These regions overlap with control networks known to be recruited during difficult tasks in healthy individuals and were more consistently activated by patients during higher than lower demand tasks in this meta-analysis. Overall, these findings run counter to neurocomputational invasion of the language network into new territory or engagement of quiescent homologues. Instead, many parts of the pre-existing language network are less consistently activated in PSA, except for more consistent use of spare capacity within right hemisphere executive-control related regions (cf. variable neurodisplacement). This study provides novel insights into the language network changes that occur post-stroke. Such knowledge is essential if we are to design neurobiologically-informed therapeutic interventions to facilitate language recovery.


2021 ◽  
Author(s):  
Nicholas E. Souter ◽  
Xiuyi Wang ◽  
Hannah Thompson ◽  
Katya Krieger-Redwood ◽  
Ajay D. Halai ◽  
...  

AbstractPatients with semantic aphasia have impaired control of semantic retrieval, often accompanied by executive dysfunction following left hemisphere stroke. Many but not all of these patients have damage to the left inferior frontal gyrus, important for semantic and cognitive control. Yet semantic and cognitive control networks are highly distributed, including posterior as well as anterior components. Accordingly, semantic aphasia might not only reflect local damage but also white matter structural and functional disconnection. Here we characterise the lesions and predicted patterns of structural and functional disconnection in individuals with semantic aphasia and relate these effects to semantic and executive impairment. Impaired semantic cognition was associated with infarction in distributed left- hemisphere regions, including in the left anterior inferior frontal and posterior temporal cortex. Lesions were associated with executive dysfunction within a set of adjacent but distinct left frontoparietal clusters. Performance on executive tasks was also associated with interhemispheric structural disconnection across the corpus callosum. Poor semantic cognition was associated with small left-lateralized structurally disconnected clusters, including in the left posterior temporal cortex. These results demonstrate that while left- lateralized semantic and executive control regions are often damaged together in stroke aphasia, these deficits are associated with distinct patterns of structural disconnection, consistent with the bilateral nature of executive control and the left-lateralized yet distributed semantic control network.


2017 ◽  
Vol 45 ◽  
pp. 114-120 ◽  
Author(s):  
J.T. Zhang ◽  
S.-S. Ma ◽  
C.-G. Yan ◽  
S. Zhang ◽  
L. Liu ◽  
...  

AbstractBackground:Recently, a triple-network model suggested the abnormal interactions between the executive-control network (ECN), default-mode network (DMN) and salience network (SN) are important characteristics of addiction, in which the SN plays a critical role in allocating attentional resources toward the ECN and DMN. Although increasing studies have reported dysfunctions in these brain networks in Internet gaming disorder (IGD), interactions between these networks, particularly in the context of the triple-network model, have not been investigated in IGD. Thus, we aimed to assess alterations in the inter-network interactions of these large-scale networks in IGD, and to associate the alterations with IGD-related behaviors.Methods:DMN, ECN and SN were identified using group-level independent component analysis (gICA) in 39 individuals with IGD and 34 age and gender matched healthy controls (HCs). Then alterations in the SN-ECN and SN-DMN connectivity, as well as in the modulation of ECN versus DMN by SN, using a resource allocation index (RAI) developed and validated previously in nicotine addiction, were assessed. Further, associations between these altered network coupling and clinical assessments were also examined.Results:Compared with HCs, IGD had significantly increased SN-DMN connectivity and decreased RAI in right hemisphere (rRAI), and the rRAI in IGD was negatively associated with their scores of craving.Conclusions:These findings suggest that the deficient modulation of ECN versus DMN by SN might provide a mechanistic framework to better understand the neural basis of IGD and might provide novel evidence for the triple-network model in IGD.


2020 ◽  
Vol 30 (7) ◽  
pp. 4026-4043 ◽  
Author(s):  
Simen Hagen ◽  
Corentin Jacques ◽  
Louis Maillard ◽  
Sophie Colnat-Coulbois ◽  
Bruno Rossion ◽  
...  

Abstract We report a comprehensive mapping of the human ventral occipito-temporal cortex (VOTC) for selective responses to frequency-tagged faces or landmarks (houses) presented in rapid periodic trains of objects, with intracerebral recordings in a large sample (N = 75). Face-selective contacts are three times more numerous than house-selective contacts and show a larger amplitude, with a right hemisphere advantage for faces. Most importantly, these category-selective contacts are spatially dissociated along the lateral-to-medial VOTC axis, respectively, consistent with neuroimaging evidence. At the minority of “overlap” contacts responding selectively to both faces and houses, response amplitude to the two categories is not correlated, suggesting a contribution of distinct populations of neurons responding selectively to each category. The medio-lateral dissociation also extends into the underexplored anterior temporal lobe (ATL). In this region, a relatively high number of intracerebral recording contacts show category-exclusive responses (i.e., without any response to baseline visual objects) to faces but rarely to houses, in line with the proposed role of this region in processing people-related semantic information. Altogether, these observations shed novel insight on the neural basis of human visual recognition and strengthen the validity of the frequency-tagging approach coupled with intracerebral recordings in epileptic patients to understand human brain function.


Author(s):  
Aleksandra Janowska ◽  
Brianna Balugas ◽  
Matthew Pardillo ◽  
Victoria Mistretta ◽  
Katherine Chavarria ◽  
...  

While the desire to uncover the neural correlates of consciousness has taken numerous directions, self-face recognition has been a constant in attempts to isolate aspects of self-awareness. The neuroimaging revolution of the 1990’s bought about systematic attempts to isolate the underlying neural basis self-face recognition. These studies, including some of the first fMRI (functional Magnetic Resonance Imaging) studies, revealed a right hemisphere bias for self-face recognition in a diverse set of regions including the insula, the Dorsal Frontal Lobe, the Temporal Parietal Junction and Medial Temporal Cortex. Confirmation of these data (which are correlational) was provided by TMS (Transcranial Magnetic Stimulation) and patients in which direct inhibition or ablation of right hemisphere regions leads to a disruption or absence of self-face recognition. These data are consistent with a number of theories including a right hemisphere dominance for self-awareness and/or a right hemisphere specialization for identifying significant social relationships including to oneself.


Sign in / Sign up

Export Citation Format

Share Document