scholarly journals Does Contralateral Delay Activity Reflect Working Memory Storage or the Current Focus of Spatial Attention within Visual Working Memory?

2016 ◽  
Vol 28 (12) ◽  
pp. 2003-2020 ◽  
Author(s):  
Nick Berggren ◽  
Martin Eimer

During the retention of visual information in working memory, event-related brain potentials show a sustained negativity over posterior visual regions contralateral to the side where memorized stimuli were presented. This contralateral delay activity (CDA) is generally believed to be a neural marker of working memory storage. In two experiments, we contrasted this storage account of the CDA with the alternative hypothesis that the CDA reflects the current focus of spatial attention on a subset of memorized items set up during the most recent encoding episode. We employed a sequential loading procedure where participants memorized four task-relevant items that were presented in two successive memory displays (M1 and M2). In both experiments, CDA components were initially elicited contralateral to task-relevant items in M1. Critically, the CDA switched polarity when M2 displays appeared on the opposite side. In line with the attentional activation account, these reversed CDA components exclusively reflected the number of items that were encoded from M2 displays, irrespective of how many M1 items were already held in working memory. On trials where M1 and M2 displays were presented on the same side and on trials where M2 displays appeared nonlaterally, CDA components elicited in the interval after M2 remained sensitive to a residual trace of M1 items, indicating that some activation of previously stored items was maintained across encoding episodes. These results challenge the hypothesis that CDA amplitudes directly reflect the total number of stored objects and suggest that the CDA is primarily sensitive to the activation of a subset of working memory representations within the current focus of spatial attention.

2018 ◽  
Vol 30 (8) ◽  
pp. 1185-1196 ◽  
Author(s):  
Tobias Feldmann-Wüstefeld ◽  
Edward K. Vogel ◽  
Edward Awh

Contralateral delay activity (CDA) has long been argued to track the number of items stored in visual working memory (WM). Recently, however, Berggren and Eimer [Berggren, N., & Eimer, M. Does contralateral delay activity reflect working memory storage or the current focus of spatial attention within visual working memory? Journal of Cognitive Neuroscience, 28, 2003–2020, 2016] proposed the alternative hypothesis that the CDA tracks the current focus of spatial attention instead of WM storage. This hypothesis was based on the finding that, when two successive arrays of memoranda were placed in opposite hemifields, CDA amplitude was primarily determined by the position and number of items in the second display, not the total memory load across both displays. Here, we considered the alternative interpretation that participants dropped the first array from WM when they encoded the second array because the format of the probe display was spatially incompatible with the initial sample display. In this case, even if the CDA indexes active storage rather than spatial attention, CDA activity would be determined by the second array. We tested this idea by directly manipulating the spatial compatibility of sample and probe displays. With spatially incompatible displays, we replicated Berggren and Eimer's findings. However, with spatially compatible displays, we found clear evidence that CDA activity tracked the full storage load across both arrays, in line with a WM storage account of CDA activity. We propose that expectations of display compatibility influenced whether participants viewed the arrays as parts of a single extended event or two independent episodes. Thus, these findings raise interesting new questions about how event boundaries may shape the interplay between passive and active representations of task-relevant information.


Author(s):  
Christian Merkel ◽  
Mandy Viktoria Bartsch ◽  
Mircea A Schoenfeld ◽  
Anne-Katrin Vellage ◽  
Notger G Müller ◽  
...  

Visual working memory (VWM) is an active representation enabling the manipulation of item information even in the absence of visual input. A common way to investigate VWM is to analyze the performance at later recall. This approach, however, leaves uncertainties about whether the variation of recall performance is attributable to item encoding and maintenance or to the testing of memorized information. Here, we record the contralateral delay activity (CDA) - an established electrophysiological measure of item storage and maintenance - in human subjects performing a delayed orientation precision estimation task. This allows us to link the fluctuation of recall precision directly to the process of item encoding and maintenance. We show that for two sequentially encoded orientation items, the CDA amplitude reflects the precision of orientation recall of both items, with higher precision being associated with a larger amplitude. Furthermore, we show that the CDA amplitude for each item varies independently from each other, suggesting that the precision of memory representations fluctuates independently.


2018 ◽  
Vol 30 (9) ◽  
pp. 1229-1240 ◽  
Author(s):  
Kirsten C. S. Adam ◽  
Matthew K. Robison ◽  
Edward K. Vogel

Neural measures of working memory storage, such as the contralateral delay activity (CDA), are powerful tools in working memory research. CDA amplitude is sensitive to working memory load, reaches an asymptote at known behavioral limits, and predicts individual differences in capacity. An open question, however, is whether neural measures of load also track trial-by-trial fluctuations in performance. Here, we used a whole-report working memory task to test the relationship between CDA amplitude and working memory performance. If working memory failures are due to decision-based errors and retrieval failures, CDA amplitude would not differentiate good and poor performance trials when load is held constant. If failures arise during storage, then CDA amplitude should track both working memory load and trial-by-trial performance. As expected, CDA amplitude tracked load (Experiment 1), reaching an asymptote at three items. In Experiment 2, we tracked fluctuations in trial-by-trial performance. CDA amplitude was larger (more negative) for high-performance trials compared with low-performance trials, suggesting that fluctuations in performance were related to the successful storage of items. During working memory failures, participants oriented their attention to the correct side of the screen (lateralized P1) and maintained covert attention to the correct side during the delay period (lateralized alpha power suppression). Despite the preservation of attentional orienting, we found impairments consistent with an executive attention theory of individual differences in working memory capacity; fluctuations in executive control (indexed by pretrial frontal theta power) may be to blame for storage failures.


2014 ◽  
Vol 26 (9) ◽  
pp. 2042-2054 ◽  
Author(s):  
Eren Gunseli ◽  
Christian N. L. Olivers ◽  
Martijn Meeter

Prominent theories of attention claim that visual search is guided through attentional templates stored in working memory. Recently, the contralateral delay activity (CDA), an electrophysiological index of working memory storage, has been found to rapidly decrease when participants repeatedly search for the same target, suggesting that, with learning, the template moves out of working memory. However, this has only been investigated with pop-out search for distinct targets, for which a strong attentional template may not be necessary. More effortful search tasks might rely more on an active attentional template in working memory, leading to a slower handoff to long-term memory and thus a slower decline of the CDA. Using ERPs, we compared the rate of learning of attentional templates in pop-out and effortful search tasks. In two experiments, the rate of decrease in the CDA was the same for both search tasks. Similar results were found for a second component indexing working memory effort, the late positive complex. However, the late positive complex was also sensitive to anticipated search difficulty, as was expressed in a greater amplitude before the harder search task. We conclude that the amount of working memory effort invested in maintaining an attentional template, but not the rate of learning, depends on search difficulty.


2020 ◽  
Author(s):  
Keisuke Fukuda ◽  
April Emily Pereira ◽  
Joseph M. Saito ◽  
Ty Yi Tang ◽  
Hiroyuki Tsubomi ◽  
...  

Visual information around us is rarely static. To carry out a task in such a dynamic environment, we often have to compare current visual input with our working memory representation of the immediate past. However, little is known about what happens to a working memory (WM) representation when it is compared with perceptual input. Here, we tested university students and found that perceptual comparisons retroactively bias working memory representations toward subjectively-similar perceptual inputs. Furthermore, using computational modeling and individual differences analyses, we found that representational integration between WM representations and perceptually-similar input underlies this similarity-induced memory bias. Together, our findings highlight a novel source of WM distortion and suggest a general mechanism that determines how WM representations interact with new perceptual input.


2020 ◽  
Author(s):  
Xueying Fu ◽  
Chaoxiong Ye ◽  
huzhonghua ◽  
Tengfei Liang ◽  
Ziyuan Li ◽  
...  

Memory performance can be improved by retrospectively cueing an item maintained in visual working memory (VWM). Different hypotheses have been proposed to explain the mechanisms behind retro-cueing and VWM. Previous behavioral studies suggest that different retro-cue validities may lead individuals to implement retro-cues in different ways to obtain a retro-cue effect. However, there is still no clear electroencephalogram (EEG) evidence to support that the retro-cue effect under different validity conditions is triggered by different mechanisms. Herein, we investigated whether retro-cue validity modulated the mechanisms underlying the retro-cue effect in VWM by using EEGs. We manipulated retro-cue validity by using blocks in a color change detection task. Contralateral delay activity (CDA) and lateralized alpha power were used assess spatial attention and memory storage, respectively. Significant retro-cue effects were observed under both high- and low-validity conditions. More importantly, although the retro-cue could redirect spatial attention under both high- and low-validity conditions, we found that participants maintained the non-cued items during a measured time interval under the low-validity condition, but dropped them out of VWM under the high-validity condition. Our results resolve previous contradictory findings. The retro-cue effect in our study can be explained by the removal hypothesis, prioritization hypothesis, and protection-during-retrieval hypothesis. This work suggests that the mechanisms underlying the retro-cue effect are not mutually exclusive, but determined by the cue validity. Individuals can voluntarily choose different mechanisms based on the expected retro-cue validity.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Stefan Berti ◽  
Urte Roeber

Encoding and maintenance of information in visual working memory in an S1-S2 task with a 1500 ms retention phase were investigated by means of event-related brain potentials (ERPs). Participants were asked to decide whether two visual stimuli were physically identical (identity comparison (IC) task) or belonged to the same set or category of equivalent patterns (category comparison (CC) task). The stimuli differ with regard to two features. (1) Each pattern can belong to a set of either four (ESS 4) or eight (ESS 8) equivalent patterns, mirroring differences in the complexity with regard to the representational structure of each pattern (i.e., equivalence set size (ESS)). (2) The set of patterns differ with regard to the rated complexity. Memory performance obtained the effects of the task instructions (IC versus CC) and the ESS (ESS 4 versus ESS 8) but not of the rated complexity. ERPs in the retention interval reveal that the stimulus-related factors (subjective complexity and ESS) affect the encoding of the stimuli as mirrored by the pronounced P3b amplitude in ESS 8 compared to ESS 4 patterns. Importantly, these effects are independent of task instructions. The pattern of results suggests an automatic processing of the ESS in the encoding phase.


2020 ◽  
Author(s):  
Nicole Hakim ◽  
Tobias Feldmann-Wüstefeld ◽  
Edward Awh ◽  
Edward K Vogel

AbstractVisual working memory (WM) must maintain relevant information, despite the constant influx of both relevant and irrelevant information. Attentional control mechanisms help determine which of this new information gets access to our capacity-limited WM system. Previous work has treated attentional control as a monolithic process–either distractors capture attention or they are suppressed. Here, we provide evidence that attentional capture may instead be broken down into at least two distinct sub-component processes: 1) spatial capture, which refers to when spatial attention shifts towards the location of irrelevant stimuli, and 2) item-based capture, which refers to when item-based WM representations of irrelevant stimuli are formed. To dissociate these two sub-component processes of attentional capture, we utilized a series of EEG components that track WM maintenance (contralateral delay activity), suppression (distractor positivity), item individuation (N2pc), and spatial attention (lateralized alpha power). We show that relevant interrupters trigger both spatial and item-based capture, which means that they undermine WM maintenance more. Irrelevant interrupters, however, only trigger spatial capture from which ongoing WM representations can recover more easily. This fractionation of attentional capture into distinct sub-component processes provides a framework by which the fate of ongoing WM processes after interruption can be explained.


Sign in / Sign up

Export Citation Format

Share Document