scholarly journals Brain and Cognitive Mechanisms of Top–Down Attentional Control in a Multisensory World: Benefits of Electrical Neuroimaging

2019 ◽  
Vol 31 (3) ◽  
pp. 412-430 ◽  
Author(s):  
Pawel J. Matusz ◽  
Nora Turoman ◽  
Ruxandra I. Tivadar ◽  
Chrysa Retsa ◽  
Micah M. Murray

In real-world environments, information is typically multisensory, and objects are a primary unit of information processing. Object recognition and action necessitate attentional selection of task-relevant from among task-irrelevant objects. However, the brain and cognitive mechanisms governing these processes remain not well understood. Here, we demonstrate that attentional selection of visual objects is controlled by integrated top–down audiovisual object representations (“attentional templates”) while revealing a new brain mechanism through which they can operate. In multistimulus (visual) arrays, attentional selection of objects in humans and animal models is traditionally quantified via “the N2pc component”: spatially selective enhancements of neural processing of objects within ventral visual cortices at approximately 150–300 msec poststimulus. In our adaptation of Folk et al.'s [Folk, C. L., Remington, R. W., & Johnston, J. C. Involuntary covert orienting is contingent on attentional control settings. Journal of Experimental Psychology: Human Perception and Performance, 18, 1030–1044, 1992] spatial cueing paradigm, visual cues elicited weaker behavioral attention capture and an attenuated N2pc during audiovisual versus visual search. To provide direct evidence for the brain, and so, cognitive, mechanisms underlying top–down control in multisensory search, we analyzed global features of the electrical field at the scalp across our N2pcs. In the N2pc time window (170–270 msec), color cues elicited brain responses differing in strength and their topography. This latter finding is indicative of changes in active brain sources. Thus, in multisensory environments, attentional selection is controlled via integrated top–down object representations, and so not only by separate sensory-specific top–down feature templates (as suggested by traditional N2pc analyses). We discuss how the electrical neuroimaging approach can aid research on top–down attentional control in naturalistic, multisensory settings and on other neurocognitive functions in the growing area of real-world neuroscience.

2021 ◽  
Author(s):  
Einat Rashal ◽  
Mehdi Senoussi ◽  
Elisa Santandrea ◽  
Suliann Ben Hamed ◽  
Emiliano Macaluso ◽  
...  

This work reports an investigation of the effect of combined top-down and bottom-up attentional control sources, using known attention-related EEG components that are thought to reflect target selection (N2pc) and distractor suppression (PD), in easy and difficult visual search tasks.


2020 ◽  
Vol 32 (6) ◽  
pp. 1170-1183 ◽  
Author(s):  
Dirk Kerzel ◽  
Nicolas Burra

Top–down control of attention allows us to resist attentional capture by salient stimuli that are irrelevant to our current goals. Recently, it was proposed that attentional suppression of salient distractors contributes to top–down control by biasing attention away from the distractor. With small search displays, attentional suppression of salient distractors may even result in reduced RTs on distractor-present trials. In support of attentional suppression, electrophysiological measures revealed a positivity between 200 and 300 msec contralateral to the distractor, which has been referred to as distractor positivity (PD). We reexamined distractor benefits with small search displays and found that the positivity to the distractor was followed by a negativity to the distractor. The negativity, referred to as N2pc, is considered an index of attentional selection of the contralateral element. Thus, attentional suppression of the distractor (PD) preceded attentional capture (N2pc) by the distractor, which is at odds with the idea that attentional suppression avoids attentional capture by the distractor. Instead, we suggest that the initial “PD” is not a positivity to the distractor but rather a negativity (N2pc) to the contralateral context element, suggesting that, initially, the context captured attention. Subsequently, the distractor was selected because, paradoxically, participants searched all lateral target positions (even when irrelevant) before they examined the vertical positions. Consistent with this idea, search times were shorter for lateral than vertical targets. In summary, the early voltage difference in small search displays is unrelated to distractor suppression but may reflect capture by the context.


Author(s):  
Nora Turoman ◽  
Ruxandra I. Tivadar ◽  
Chrysa Retsa ◽  
Anne M. Maillard ◽  
Gaia Scerif ◽  
...  

AbstractSchooling may shape children’s abilities to control their attention, but it is unclear if this impact extends from control over visual objects to encompass multisensory objects, which are more typical of everyday environments. We compared children across three primary school grades (Swiss 1st, 3rd, and 5th grade) on their performance on a computer game-like audio-visual attentional control task, while recording their EEG. Behavioural markers of visual attentional control were present from 3rd grade (after 2 years of schooling), whereas multisensory attentional control was not detected in any group. However, multivariate whole-brain EEG analyses (‘electrical neuroimaging’) revealed stable patterns of brain activity that indexed both types of attentional control – visual control in all groups, and multisensory attentional control – from 3rd grade onwards. Our findings suggest that using multivariate EEG approaches can uncover otherwise undetectable mechanisms of attentional control over visual and multisensory objects and characterise how they differ at different educational stages.Lay AbstractWe measured how visual and audiovisual distractors differ in capturing attention of 1st- to 5th-graders while recording the children’s brain activity. Brain activity results showed that all children were sensitive to visual distraction, and from 3rd grade onwards, children were also sensitive to audiovisual distraction. These results deepen our understanding of how school children control their attention in everyday environments, which are made up of information that stimulates multiple senses at a time.


2021 ◽  
Author(s):  
Liping Hu ◽  
Huikang Zhang ◽  
Hongsi Tang ◽  
Lin Shen ◽  
Rui Wu ◽  
...  

Behavioral evidence shows that anxious individuals tend to be distracted by irrelevant stimulation not only for threat-related stimuli but also for non-emotional neutral stimuli. These findings suggest that anxious individuals may have a general impairment of attentional control, especially inhibition function. However, the neural mechanism underlying the anxiety-related impairment in attentional control is unclear. Here, in a visual search task with geometric stimuli, we examined attentional processing of the non-emotional neutral distractor on participants with different levels of anxiety, using the event-related-potential (ERP) indices of attentional selection (N2 posterior contralateral [N2pc]) and top-down inhibition (distractor positivity [Pd]). We found that distractor-evoked Pd amplitudes were negatively correlated with trait-anxiety scores, i.e., the higher the level of anxiety, the worse the ability of attentional inhibition. In contrast, the amplitudes of distractor-evoked N2pc did not vary with anxiety levels, suggesting that trait-anxiety level does not affect stimulus-driven attentional capture. We also observed attentional processing of target stimuli and found that the peak latency of target-evoked N2pc was delayed as anxiety levels rise, suggesting that anxiety impairs the efficiency of top-down attentional selection of the target. The present study provides direct neurophysiological evidence for general anxiety-related impairment of attentional control.


2016 ◽  
Vol 28 (11) ◽  
pp. 1672-1687 ◽  
Author(s):  
Michael Jenkins ◽  
Anna Grubert ◽  
Martin Eimer

Previous research has shown that when two color-defined target objects appear in rapid succession at different locations, attention is deployed independently and in parallel to both targets. This study investigated whether this rapid simultaneous attentional target selection mechanism can also be employed in tasks where targets are defined by a different visual feature (shape) or when alphanumerical category is the target selection attribute. Two displays that both contained a target and a nontarget object on opposite sides were presented successively, and the SOA between the two displays was 100, 50, 20, or 10 msec in different blocks. N2pc components were recorded to both targets as a temporal marker of their attentional selection. When observers searched for shape-defined targets (Experiment 1), N2pc components to the two targets were equal in size and overlapped in time when the SOA between the two displays was short, reflecting two parallel shape-guided target selection processes with their own independent time course. Essentially the same temporal pattern of N2pc components was observed when alphanumerical category was the target-defining attribute (Experiment 2), demonstrating that the rapid parallel attentional selection of multiple target objects is not restricted to situations where the deployment of attention can be guided by elementary visual features but that these processes can even be employed in category-based attentional selection tasks. These findings have important implications for our understanding of the cognitive and neural basis of top–down attentional control.


2013 ◽  
Vol 25 (5) ◽  
pp. 719-729 ◽  
Author(s):  
Rachel Wu ◽  
Gaia Scerif ◽  
Richard N. Aslin ◽  
Tim J. Smith ◽  
Rebecca Nako ◽  
...  

Visual search is often guided by top–down attentional templates that specify target-defining features. But search can also occur at the level of object categories. We measured the N2pc component, a marker of attentional target selection, in two visual search experiments where targets were defined either categorically (e.g., any letter) or at the item level (e.g., the letter C) by a prime stimulus. In both experiments, an N2pc was elicited during category search, in both familiar and novel contexts (Experiment 1) and with symbolic primes (Experiment 2), indicating that, even when targets are only defined at the category level, they are selected at early sensory-perceptual stages. However, the N2pc emerged earlier and was larger during item-based search compared with category-based search, demonstrating the superiority of attentional guidance by item-specific templates. We discuss the implications of these findings for attentional control and category learning.


2006 ◽  
Vol 18 (3) ◽  
pp. 456-471 ◽  
Author(s):  
Sabine Windmann ◽  
Michaela Wehrmann ◽  
Pasquale Calabrese ◽  
Onur Güntürkün

The primary source of top-down attentional control in object perception is the prefrontal cortex. This region is involved in the maintenance of goal-related information as well as in attentional selection and set shifting. Recent approaches have emphasized the role of top-down processes during elementary visual processes as exemplified in bistable vision where perception oscillates automatically between two mutually exclusive states. The prefrontal cortex might influence this process either by maintaining the dominant pattern while protecting it against the competing representation, or by facilitating perceptual switches between the two competing representations. To address this issue, we investigated reported perceptual reversals in patients with circumscribed lesions of the prefrontal cortex and healthy control participants in three experimental conditions: hold (maintaining the dominant view), speed (inducing as many perceptual switches as possible), and neutral (no intervention). Results indicated that although the patients showed normal switching rates in the neutral condition and were able to control perceptual switches in the hold condition as much as control subjects were, they were less able to facilitate reversals specifically in the speed condition. These results suggest that the prefrontal cortex is necessary to bias the selection of visual representations in accord with current goals, but is less essential for maintaining selected information active that is continuously available in the environment. As for attentional selection, the present results suggest that the prefrontal cortex initiates perceptual reversals by withdrawing top-down support from the dominant representation without (or prior to) boosting the suppressed view.


2012 ◽  
Author(s):  
Charles L. Folk ◽  
Deborah Kendzierski ◽  
Brad Wyble

Sign in / Sign up

Export Citation Format

Share Document