Information Transfer Through Stochastic Transmission of a Linear Combination of Rates

2013 ◽  
Vol 25 (9) ◽  
pp. 2265-2302 ◽  
Author(s):  
Ioannis Smyrnakis ◽  
Stelios Smirnakis

In this work, the Shannon information transfer rate due to the transmission of a linear combination of the firing rates of a number of afferent neurons is examined. The transmission of this linear combination (transfer statistic) takes place through a stochastic firing process, while a rate code is assumed. Constraints are imposed on the transmission process by the requirement that the coefficient of variation for the transfer statistic is small and by the relative variance of the individual terms in the calculation of the statistic. In the regime of no noise or signal correlations among the input neurons, simulations suggest that information transfer for fixed overall input is favored when there are few high-firing neurons, as opposed to more lower-firing neurons. Signal correlations among low-firing neurons can result in aggregates of high firing rates, improving in this way information transfer and calculational robustness. Under reasonable rate code assumptions, information transfer rates obtained are of the order 3 to 10 bit/sec.

Author(s):  
A. Douglas Perriment ◽  
William R. Webster

Using a bi-sensory signal, simultaneously presented in the visual and auditory modes, an experiment was carried out to examine the effects of varied display-control relationships upon information transfer rate. Of the three response variables examined i.e., limb relationship, control position, & digit correspondence, that of control position was found to have the most significant effect upon performance. Controls which were centrally placed, gave higher information transfer rates than those placed laterally to the line of the incoming signal. The complex interactions, which were observed between all three response variables suggest the need for system specific examination of S-R ensembles where complex bi-sensory signals are used.


2004 ◽  
Vol 92 (1) ◽  
pp. 302-310 ◽  
Author(s):  
Ralph A. DiCaprio

The thoracic-coxal muscle receptor organ (TCMRO) is the only proprioceptor at the thoracic-coxal joint in the crab leg. The S and T afferent neurons of the TCMRO convey signals to the CNS solely by means of graded changes in membrane potential. The rate of information transfer of these afferents was determined by measuring the signal-to-noise ratio (SΝR) of these cells after repeated stimulation of the receptor with identical sequences of random movement and applying the Shannon formula for the information capacity of a Gaussian channel. Intracellular recordings were made from the S and T afferents adjacent to the transduction site at the origin of the receptor and along the axon 5–7 mm distal to this site. These nonspiking afferents transduce receptor movement and transmit this information with extremely high fidelity. The SNR of both neurons near the transduction site was >1000 over most of the 200 Hz stimulation bandwidth, and the mean information transfer rate was ∼2,500 bits/s. When calculated over a wider bandwidth of 500 Hz, the information rate was >4,600 bits/s. The effect of axonal cable properties on the information rate was evaluated by determining the SNR from membrane potential recordings made 5–7 mm distal to the transduction region. The major effect of graded transmission along the axon was attenuation and low-pass filtering of the sensory signal. The consequent reduction in signal power and bandwidth decreased the information transfer by ∼10–15% over 200 Hz and ∼30% over a 500 Hz bandwidth.


2018 ◽  
Vol 28 (10) ◽  
pp. 1850034 ◽  
Author(s):  
Wei Li ◽  
Mengfan Li ◽  
Huihui Zhou ◽  
Genshe Chen ◽  
Jing Jin ◽  
...  

Increasing command generation rate of an event-related potential-based brain-robot system is challenging, because of limited information transfer rate of a brain-computer interface system. To improve the rate, we propose a dual stimuli approach that is flashing a robot image and is scanning another robot image simultaneously. Two kinds of event-related potentials, N200 and P300 potentials, evoked in this dual stimuli condition are decoded by a convolutional neural network. Compared with the traditional approaches, this proposed approach significantly improves the online information transfer rate from 23.0 or 17.8 to 39.1 bits/min at an accuracy of 91.7%. These results suggest that combining multiple types of stimuli to evoke distinguishable ERPs might be a promising direction to improve the command generation rate in the brain-computer interface.


2021 ◽  
Author(s):  
Erik J. Peterson ◽  
Bradley Voytek

AbstractNeural oscillations are one of the most well-known macroscopic phenomena observed in the nervous system, and the benefits of oscillatory coding have been the topic of frequent analysis. Many of these studies focused on communication between populations which were already oscillating, and sought to understand how synchrony and communication interact. In this paper, take an alternative approach. We focus on measuring the costs, and benefits, of moving to an from an aperiodic code to a rhythmic one. We utilize a Linear-Nonlinear Poisson model, and assume a rate code. We report that no one factor seems to predict the costs, or benefits, of translating into a rhythmic code. Instead the synaptic connection type, strength, population size, and stimulus and oscillation firing rates interact in nonlinear ways. We suggest a number of experiments that might be used to confirm these predictions.Author summaryIt’s good to oscillate, sometimes.


Author(s):  
A. A. Cherkasova ◽  
◽  
R. F. Salakhov ◽  
D. A. Astaсhov ◽  
◽  
...  

This work is aimed at creating a hardware-software signal simulator of the upgraded inter-satellite radio link (ISRL) of the GLONASS system. The simulator shapes ISRL signals with dynamically changing parameters of the Doppler frequency shift and delay, which correspond to the mutual dynamics of spacecraft (SC) motion of the GLONASS system. The upgraded inter-satellite radio link will provide (as compared to the current ISRL) an increase in the information transfer rate of up to four times, as well as boost the accuracy of measuring the distance between satellites by two times. Modernization consists in complementing the radio signal of the second orthogonal (phase-shifted carrier frequency by 90 degrees relative to the existing one) component. To modernize the ISRL, it is necessary to create and verify new equipment for receiving and transmitting signals of the upgraded ISRL of the GLONASS system. The simulator is designed to process measurement algorithms embedded in the on-board equipment for inter-satellite measurements and assess their consistency. Consistency evaluation consists in measuring and analyzing the difference between the Doppler parameters and delay introduced into the signal and the estimation of these parameters in the receiving equipment of the ISRL. This difference will be the measurement error. Dynamic simulation is performed for 24 system points, corresponding to GLONASS satellites, on the half-period of satellite revolution (20 280 seconds). The signal is generated at the input of the antenna-feeder device of one of the satellites in accordance with the information for generating the measuring signal, parameters of the transmitters of the signals of the upgraded ISRL and the almanac of the satellite constellation (because the signal at the input of the antenna-feeder device of the navigation receiver incomes from several SC) specified by the user.


2013 ◽  
Author(s):  
Zacharias Vamvakousis ◽  
Rafael Ramirez

P300-based brain-computer interfaces (BCIs) are especially useful for people with illnesses, which prevent them from communicating in a normal way (e.g. brain or spinal cord injury). However, most of the existing P300-based BCI systems use visual stimulation which may not be suitable for patients with sight deterioration (e.g. patients suffering from amyotrophic lateral sclerosis). Moreover, P300-based BCI systems rely on expensive equipment, which greatly limits their use outside the clinical environment. Therefore, we propose a multi-class BCI system based solely on auditory stimuli, which makes use of low-cost EEG technology. We explored different combinations of timbre, pitch and spatial auditory stimuli (TimPiSp: timbre-pitch-spatial, TimSp: timbre-spatial, and Timb: timbre-only) and three inter-stimulus intervals (150ms, 175ms and 300ms), and evaluated our system by conducting an oddball task on 7 healthy subjects. This is the first study in which these 3 auditory cues are compared. After averaging several repetitions in the 175ms inter-stimulus interval, we obtained average selection accuracies of 97.14%, 91.43%, and 88.57% for modalities TimPiSp, TimSp, and Timb, respectively. Best subject’s accuracy was 100% in all modalities and inter-stimulus intervals. Average information transfer rate for the 150ms inter-stimulus interval in the TimPiSp modality was 14.85 bits/min. Best subject’s information transfer rate was 39.96 bits/min for 175ms Timbre condition. Based on the TimPiSp modality, an auditory P300 speller was implemented and evaluated by asking users to type a 12-characters-long phrase. Six out of 7 users completed the task. The average spelling speed was 0.56 chars/min and best subject’s performance was 0.84 chars/min. The obtained results show that the proposed auditory BCI is successful with healthy subjects and may constitute the basis for future implementations of more practical and affordable auditory P300-based BCI systems.


2021 ◽  
Author(s):  
Mikhail Petrenko ◽  
Sergei Dmitriev ◽  
Anatoly Pazgalev ◽  
Alex Ossadtchi ◽  
Anton Vershovskii

Magnetic sensors developed for application in magnetoencephalography must meet a number of requirements; the main ones are compactness, sensitivity and response speed. We present a quantum optically pumped atomic sensor with cell volume of 0.5cm<sup>3</sup> that meets these requirements and is operable in nonzero magnetic fields. The ultimate sensitivity of the sensor was estimated as (using the criteria of the ratio of the slope of the magnetic resonance signal to the shot noise spectral density) to be better than 5 fT/Hz<sup>1/2</sup>. The actual sensitivity, measured in a gradiometric scheme, reaches 13 fT/Hz<sup>1/2 </sup>per sensor. We also present a novel and fast algorithm for optimization of the geometric properties of non-zero field sensor array with respect to maximization of the information transfer rate for cortical sources.<br>


1965 ◽  
Vol 41 (2) ◽  
pp. 215-221
Author(s):  
P. L. Northcott

The need to compare individuals is discussed briefly. It is suggested that the composite quality of an individual is best defined as the weighted sum of a number of measurable characteristics of the individual. A statistical procedure for comparison of weighted average quality is derived from application of the principle of the linear combination of variables. A digital computer program is available.


Sign in / Sign up

Export Citation Format

Share Document