Complex Neural Network Models for Time-Varying Drazin Inverse

2016 ◽  
Vol 28 (12) ◽  
pp. 2790-2824 ◽  
Author(s):  
Xue-Zhong Wang ◽  
Yimin Wei ◽  
Predrag S. Stanimirović

Two complex Zhang neural network (ZNN) models for computing the Drazin inverse of arbitrary time-varying complex square matrix are presented. The design of these neural networks is based on corresponding matrix-valued error functions arising from the limit representations of the Drazin inverse. Two types of activation functions, appropriate for handling complex matrices, are exploited to develop each of these networks. Theoretical results of convergence analysis are presented to show the desirable properties of the proposed complex-valued ZNN models. Numerical results further demonstrate the effectiveness of the proposed models.

1997 ◽  
Vol 119 (2) ◽  
pp. 247-254 ◽  
Author(s):  
J. Mou

A method using artificial neural networks and inverse kinematics for machine tool error correction is presented. A generalized error model is derived, by using rigid body kinematics, to describe the error motion between the cutting tool and workpiece at discrete temperature conditions. Neural network models are then built to track the time-varying machine tool errors at various thermal conditions. The output of the neural network models can be used to periodically modify, using inverse kinematics technique, the error model’s coefficients as the cutting processes proceeded. Thus, the time-varying positioning errors at other points within the designated workspace can be estimated. Experimental results show that the time-varying machine tool errors can be estimated and corrected with desired accuracy. The estimated errors resulted from the proposed methodology could be used to adjust the depth of cut on the finish pass, or correct the probing data for process-intermittent inspection to improve the accuracy of workpieces.


Entropy ◽  
2019 ◽  
Vol 21 (2) ◽  
pp. 120
Author(s):  
Ping Hou ◽  
Jun Hu ◽  
Jie Gao ◽  
Peican Zhu

In this paper, the problem of stability analysis for memristor-based complex-valued neural networks (MCVNNs) with time-varying delays is investigated extensively. This paper focuses on the exponential stability of the MCVNNs with time-varying delays. By means of the Brouwer’s fixed-point theorem and M-matrix, the existence, uniqueness, and exponential stability of the equilibrium point for MCVNNs are studied, and several sufficient conditions are obtained. In particular, these results can be applied to general MCVNNs whether the activation functions could be explicitly described by dividing into two parts of the real parts and imaginary parts or not. Two numerical simulation examples are provided to illustrate the effectiveness of the theoretical results.


2018 ◽  
Vol 6 (11) ◽  
pp. 216-216 ◽  
Author(s):  
Zhongheng Zhang ◽  
◽  
Marcus W. Beck ◽  
David A. Winkler ◽  
Bin Huang ◽  
...  

2021 ◽  
Vol 1 (1) ◽  
pp. 19-29
Author(s):  
Zhe Chu ◽  
Mengkai Hu ◽  
Xiangyu Chen

Recently, deep learning has been successfully applied to robotic grasp detection. Based on convolutional neural networks (CNNs), there have been lots of end-to-end detection approaches. But end-to-end approaches have strict requirements for the dataset used for training the neural network models and it’s hard to achieve in practical use. Therefore, we proposed a two-stage approach using particle swarm optimizer (PSO) candidate estimator and CNN to detect the most likely grasp. Our approach achieved an accuracy of 92.8% on the Cornell Grasp Dataset, which leaped into the front ranks of the existing approaches and is able to run at real-time speeds. After a small change of the approach, we can predict multiple grasps per object in the meantime so that an object can be grasped in a variety of ways.


10.14311/1121 ◽  
2009 ◽  
Vol 49 (2) ◽  
Author(s):  
M. Chvalina

This article analyses the existing possibilities for using Standard Statistical Methods and Artificial Intelligence Methods for a short-term forecast and simulation of demand in the field of telecommunications. The most widespread methods are based on Time Series Analysis. Nowadays, approaches based on Artificial Intelligence Methods, including Neural Networks, are booming. Separate approaches will be used in the study of Demand Modelling in Telecommunications, and the results of these models will be compared with actual guaranteed values. Then we will examine the quality of Neural Network models. 


2021 ◽  
Vol 8 (3) ◽  
pp. 486-498
Author(s):  
N. Jayanthi ◽  
◽  
R. Santhakumari ◽  

This paper deals with the problem of finite-time projective synchronization for a class of neutral-type complex-valued neural networks (CVNNs) with time-varying delays. A simple state feedback control protocol is developed such that slave CVNNs can be projective synchronized with the master system in finite time. By employing inequalities technique and designing new Lyapunov--Krasovskii functionals, various novel and easily verifiable conditions are obtained to ensure the finite-time projective synchronization. It is found that the settling time can be explicitly calculated for the neutral-type CVNNs. Finally, two numerical simulation results are demonstrated to validate the theoretical results of this paper.


Author(s):  
Ming Zhang

Real world financial data is often discontinuous and non-smooth. Accuracy will be a problem, if we attempt to use neural networks to simulate such functions. Neural network group models can perform this function with more accuracy. Both Polynomial Higher Order Neural Network Group (PHONNG) and Trigonometric polynomial Higher Order Neural Network Group (THONNG) models are studied in this chapter. These PHONNG and THONNG models are open box, convergent models capable of approximating any kind of piecewise continuous function to any degree of accuracy. Moreover, they are capable of handling higher frequency, higher order nonlinear, and discontinuous data. Results obtained using Polynomial Higher Order Neural Network Group and Trigonometric polynomial Higher Order Neural Network Group financial simulators are presented, which confirm that PHONNG and THONNG group models converge without difficulty, and are considerably more accurate (0.7542% - 1.0715%) than neural network models such as using Polynomial Higher Order Neural Network (PHONN) and Trigonometric polynomial Higher Order Neural Network (THONN) models.


Author(s):  
Joarder Kamruzzaman ◽  
Ruhul Sarker

The primary aim of this chapter is to present an overview of the artificial neural network basics and operation, architectures, and the major algorithms used for training the neural network models. As can be seen in subsequent chapters, neural networks have made many useful contributions to solve theoretical and practical problems in finance and manufacturing areas. The secondary aim here is therefore to provide a brief review of artificial neural network applications in finance and manufacturing areas.


Sign in / Sign up

Export Citation Format

Share Document