Time Series Decomposition into Oscillation Components and Phase Estimation

2017 ◽  
Vol 29 (2) ◽  
pp. 332-367 ◽  
Author(s):  
Takeru Matsuda ◽  
Fumiyasu Komaki

Many time series are naturally considered as a superposition of several oscillation components. For example, electroencephalogram (EEG) time series include oscillation components such as alpha, beta, and gamma. We propose a method for decomposing time series into such oscillation components using state-space models. Based on the concept of random frequency modulation, gaussian linear state-space models for oscillation components are developed. In this model, the frequency of an oscillator fluctuates by noise. Time series decomposition is accomplished by this model like the Bayesian seasonal adjustment method. Since the model parameters are estimated from data by the empirical Bayes’ method, the amplitudes and the frequencies of oscillation components are determined in a data-driven manner. Also, the appropriate number of oscillation components is determined with the Akaike information criterion (AIC). In this way, the proposed method provides a natural decomposition of the given time series into oscillation components. In neuroscience, the phase of neural time series plays an important role in neural information processing. The proposed method can be used to estimate the phase of each oscillation component and has several advantages over a conventional method based on the Hilbert transform. Thus, the proposed method enables an investigation of the phase dynamics of time series. Numerical results show that the proposed method succeeds in extracting intermittent oscillations like ripples and detecting the phase reset phenomena. We apply the proposed method to real data from various fields such as astronomy, ecology, tidology, and neuroscience.

2017 ◽  
Vol 29 (8) ◽  
pp. 2055-2075 ◽  
Author(s):  
Takeru Matsuda ◽  
Fumiyasu Komaki

Many time series are considered to be a superposition of several oscillation components. We have proposed a method for decomposing univariate time series into oscillation components and estimating their phases (Matsuda & Komaki, 2017 ). In this study, we extend that method to multivariate time series. We assume that several oscillators underlie the given multivariate time series and that each variable corresponds to a superposition of the projections of the oscillators. Thus, the oscillators superpose on each variable with amplitude and phase modulation. Based on this idea, we develop gaussian linear state-space models and use them to decompose the given multivariate time series. The model parameters are estimated from data using the empirical Bayes method, and the number of oscillators is determined using the Akaike information criterion. Therefore, the proposed method extracts underlying oscillators in a data-driven manner and enables investigation of phase dynamics in a given multivariate time series. Numerical results show the effectiveness of the proposed method. From monthly mean north-south sunspot number data, the proposed method reveals an interesting phase relationship.


2010 ◽  
Vol 67 (6) ◽  
pp. 1138-1153 ◽  
Author(s):  
E. John Simmonds ◽  
Enrique Portilla ◽  
Dankert Skagen ◽  
Doug Beare ◽  
Dave G. Reid

Abstract Simmonds, E. J., Portilla, E., Skagen, D., Beare, D., and Reid, D. G. 2010. Investigating agreement between different data sources using Bayesian state-space models: an application to estimating NE Atlantic mackerel catch and stock abundance. – ICES Journal of Marine Science, 67: 1138–1153. Bayesian Markov chain Monte Carlo methods are ideally suited to analyses of situations where there are a variety of data sources, particularly where the uncertainties differ markedly among the data and the estimated parameters can be correlated. The example of Northeast Atlantic (NEA) mackerel is used to evaluate the agreement between available data from egg surveys, tagging, and catch-at-age using multiple models within the Bayesian framework WINBUGS. The errors in each source of information are dealt with independently, and there is extensive exploration of potential sources of uncertainty in both the data and the model. Model options include variation by age and over time of both selectivity in the fishery and natural mortality, varying the precision and calculation method for spawning-stock biomass derived from an egg survey, and the extent of missing catches varying over time. The models are compared through deviance information criterion and Bayesian posterior predictive p-values. To reconcile mortality estimated from the different datasets the landings and discards reported would have to have been between 1.7 and 3.6 times higher than the recorded catches.


Sign in / Sign up

Export Citation Format

Share Document