Parameter Identifiability in Statistical Machine Learning: A Review

2017 ◽  
Vol 29 (5) ◽  
pp. 1151-1203 ◽  
Author(s):  
Zhi-Yong Ran ◽  
Bao-Gang Hu

This review examines the relevance of parameter identifiability for statistical models used in machine learning. In addition to defining main concepts, we address several issues of identifiability closely related to machine learning, showing the advantages and disadvantages of state-of-the-art research and demonstrating recent progress. First, we review criteria for determining the parameter structure of models from the literature. This has three related issues: parameter identifiability, parameter redundancy, and reparameterization. Second, we review the deep influence of identifiability on various aspects of machine learning from theoretical and application viewpoints. In addition to illustrating the utility and influence of identifiability, we emphasize the interplay among identifiability theory, machine learning, mathematical statistics, information theory, optimization theory, information geometry, Riemann geometry, symbolic computation, Bayesian inference, algebraic geometry, and others. Finally, we present a new perspective together with the associated challenges.

Author(s):  
Osval Antonio Montesinos López ◽  
Abelardo Montesinos López ◽  
Jose Crossa

AbstractWe provide the fundamentals of convolutional neural networks (CNNs) and include several examples using the Keras library. We give a formal motivation for using CNN that clearly shows the advantages of this topology compared to feedforward networks for processing images. Several practical examples with plant breeding data are provided using CNNs under two scenarios: (a) one-dimensional input data and (b) two-dimensional input data. The examples also illustrate how to tune the hyperparameters to be able to increase the probability of a successful application. Finally, we give comments on the advantages and disadvantages of deep neural networks in general as compared with many other statistical machine learning methodologies.


2020 ◽  
Vol 89 ◽  
pp. 20-29
Author(s):  
Sh. K. Kadiev ◽  
◽  
R. Sh. Khabibulin ◽  
P. P. Godlevskiy ◽  
V. L. Semikov ◽  
...  

Introduction. An overview of research in the field of classification as a method of machine learning is given. Articles containing mathematical models and algorithms for classification were selected. The use of classification in intelligent management decision support systems in various subject areas is also relevant. Goal and objectives. The purpose of the study is to analyze papers on the classification as a machine learning method. To achieve the objective, it is necessary to solve the following tasks: 1) to identify the most used classification methods in machine learning; 2) to highlight the advantages and disadvantages of each of the selected methods; 3) to analyze the possibility of using classification methods in intelligent systems to support management decisions to solve issues of forecasting, prevention and elimination of emergencies. Methods. To obtain the results, general scientific and special methods of scientific knowledge were used - analysis, synthesis, generalization, as well as the classification method. Results and discussion thereof. According to the results of the analysis, studies with a mathematical formulation and the availability of software developments were identified. The issues of classification in the implementation of machine learning in the development of intelligent decision support systems are considered. Conclusion. The analysis revealed that enough algorithms were used to perform the classification while sorting the acquired knowledge within the subject area. The implementation of an accurate classification is one of the fundamental problems in the development of management decision support systems, including for fire and emergency prevention and response. Timely and effective decision by officials of operational shifts for the disaster management is also relevant. Key words: decision support, analysis, classification, machine learning, algorithm, mathematical models.


Healthcare ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 656
Author(s):  
Vladimir Bulatnikov ◽  
Cristinel Petrişor Constantin

This paper aims at finding the most dominant ideas about the marketing of healthcare systems highlighted in the mainstream literature, with a focus on Russia and Romania. To reach this goal, a systematic analysis of literature was conducted and various competitive advantages and disadvantages of the medical models that require special attention from the governments are considered. In this respect we examined 106 papers published during 2006 to 2020 found on four scientific databases. They were selected using inclusion and exclusion criteria according to PRISMA methodology. The main findings of the research consist of the opportunity to use marketing tools in order to improve the quality of healthcare systems in the named countries. Thus, using market orientation, the managers of healthcare systems could stimulate the innovation, the efficiency of funds allocation and the quality of medical services. The results will lead to a better quality of population life and to an increasing of life expectancy. As this paper reviews some articles from Russian literature, it can add a new perspective to the topic. These outcomes have implications for government, business environment, and academia, which should cooperate in order to develop the healthcare system using marketing strategies.


Diagnostics ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 551
Author(s):  
Chris Boyd ◽  
Greg Brown ◽  
Timothy Kleinig ◽  
Joseph Dawson ◽  
Mark D. McDonnell ◽  
...  

Research into machine learning (ML) for clinical vascular analysis, such as those useful for stroke and coronary artery disease, varies greatly between imaging modalities and vascular regions. Limited accessibility to large diverse patient imaging datasets, as well as a lack of transparency in specific methods, are obstacles to further development. This paper reviews the current status of quantitative vascular ML, identifying advantages and disadvantages common to all imaging modalities. Literature from the past 8 years was systematically collected from MEDLINE® and Scopus database searches in January 2021. Papers satisfying all search criteria, including a minimum of 50 patients, were further analysed and extracted of relevant data, for a total of 47 publications. Current ML image segmentation, disease risk prediction, and pathology quantitation methods have shown sensitivities and specificities over 70%, compared to expert manual analysis or invasive quantitation. Despite this, inconsistencies in methodology and the reporting of results have prevented inter-model comparison, impeding the identification of approaches with the greatest potential. The clinical potential of this technology has been well demonstrated in Computed Tomography of coronary artery disease, but remains practically limited in other modalities and body regions, particularly due to a lack of routine invasive reference measurements and patient datasets.


Cancers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2764
Author(s):  
Xin Yu Liew ◽  
Nazia Hameed ◽  
Jeremie Clos

A computer-aided diagnosis (CAD) expert system is a powerful tool to efficiently assist a pathologist in achieving an early diagnosis of breast cancer. This process identifies the presence of cancer in breast tissue samples and the distinct type of cancer stages. In a standard CAD system, the main process involves image pre-processing, segmentation, feature extraction, feature selection, classification, and performance evaluation. In this review paper, we reviewed the existing state-of-the-art machine learning approaches applied at each stage involving conventional methods and deep learning methods, the comparisons within methods, and we provide technical details with advantages and disadvantages. The aims are to investigate the impact of CAD systems using histopathology images, investigate deep learning methods that outperform conventional methods, and provide a summary for future researchers to analyse and improve the existing techniques used. Lastly, we will discuss the research gaps of existing machine learning approaches for implementation and propose future direction guidelines for upcoming researchers.


Sign in / Sign up

Export Citation Format

Share Document