scholarly journals Center Manifold Analysis of Plateau Phenomena Caused by Degeneration of Three-Layer Perceptron

2020 ◽  
Vol 32 (4) ◽  
pp. 683-710
Author(s):  
Daiji Tsutsui

A hierarchical neural network usually has many singular regions in the parameter space due to the degeneration of hidden units. Here, we focus on a three-layer perceptron, which has one-dimensional singular regions comprising both attractive and repulsive parts. Such a singular region is often called a Milnor-like attractor. It is empirically known that in the vicinity of a Milnor-like attractor, several parameters converge much faster than the rest and that the dynamics can be reduced to smaller-dimensional ones. Here we give a rigorous proof for this phenomenon based on a center manifold theory. As an application, we analyze the reduced dynamics near the Milnor-like attractor and study the stochastic effects of the online learning.

1997 ◽  
Vol 119 (2) ◽  
pp. 158-165 ◽  
Author(s):  
Amir Khajepour ◽  
M. Farid Golnaraghi ◽  
Kirsten A. Morris

In this paper we consider the problem of regulation of a flexible lumped parameter beam. The controller is an active/passive mass-spring-dashpot mechanism which is free to slide along the beam. In this problem the plant/controller equations are coupled and nonlinear, and the linearized equations of the system have two uncontrollable modes associated with a pair of pure imaginary eigenvalues. As a result, linear control techniques as well as most conventional nonlinear control techniques can not be applied. In earlier studies Golnaraghi (1991) and Golnaraghi et al. (1994) a control strategy based on Internal resonance was developed to transfer the oscillatory energy from the beam to the slider, where it was dissipated through controller damping. Although these studies provided very good understanding of the control strategy, the analytical method was based on perturbation techniques and had many limitations. Most of the work was based on numerical techniques and trial and error. In this paper we use center manifold theory to address the shortcomings of the previous studies, and extend the work to a more general control law. The technique is based on reducing the dimension of system and simplifying the nonlinearities using center manifold and normal forms techniques, respectively. The simplified equations are used to investigate the stability and to develop a relation for the optimal controller/plant natural frequencies at which the maximum transfer of energy occurs. One of the main contributions of this work is the elimination of the trial and error and inclusion of damping in the optimal frequency relationship.


2018 ◽  
Vol 28 (11) ◽  
pp. 1850139 ◽  
Author(s):  
Laigang Guo ◽  
Pei Yu ◽  
Yufu Chen

This paper is concerned with the number of limit cycles bifurcating in three-dimensional quadratic vector fields with [Formula: see text] symmetry. The system under consideration has three fine focus points which are symmetric about the [Formula: see text]-axis. Center manifold theory and normal form theory are applied to prove the existence of 12 limit cycles with [Formula: see text]–[Formula: see text]–[Formula: see text] distribution in the neighborhood of three singular points. This is a new lower bound on the number of limit cycles in three-dimensional quadratic systems.


2021 ◽  
Vol 31 (14) ◽  
Author(s):  
Ruimin Zhang ◽  
Xiaohui Liu ◽  
Chunjin Wei

In this paper, we study a classic mutualistic relationship between the leaf cutter ants and their fungus garden, establishing a time delay mutualistic system with stage structure. We investigate the stability and Hopf bifurcation by analyzing the distribution of the roots of the associated characteristic equation. By means of the center manifold theory and normal form method, explicit formulae are derived to determine the stability, direction and other properties of bifurcating periodic solutions. Finally, some numerical simulations are carried out for illustrating the theoretical results.


2019 ◽  
Vol 28 (15) ◽  
pp. 1950173 ◽  
Author(s):  
Subhajyoti Pal ◽  
Sudip Mishra ◽  
Subenoy Chakraborty

This paper deals with a nonminimally coupled scalar field in the background of homogeneous and isotropic Friedmann–Lemaître–Robertson–Walker (FLRW) flat spacetime. As Einstein field equations are coupled second-order nonlinear differential equations, it is very hard to find exact solutions. By suitable choice of variables, we transform Einstein field equations to an autonomous system and critical points are determined. We use center manifold theory to characterize nonhyperbolic critical points and are found to be saddle in nature. We discuss possible bifurcation scenarios, which indicate the existence of the cosmological bouncing model.


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Yingguo Li

We consider the nonlinear dynamical behavior of a three-dimensional recurrent neural network with time delay. By choosing the time delay as a bifurcation parameter, we prove that Hopf bifurcation occurs when the delay passes through a sequence of critical values. Applying the nor- mal form method and center manifold theory, we obtain some local bifurcation results and derive formulas for determining the bifurcation direction and the stability of the bifurcated periodic solution. Some numerical examples are also presented to verify the theoretical analysis.


2010 ◽  
Vol 20 (04) ◽  
pp. 1255-1259
Author(s):  
CHUNRUI ZHANG ◽  
BAODONG ZHENG

In this paper, we consider double zero singularity of a symmetric BAM neural network model with a time delay. Based on the normal form approach and the center manifold theory, we obtain the normal form on the centre manifold with double zero singularity. Some numerical simulations support our analysis results.


Sign in / Sign up

Export Citation Format

Share Document