A Teleoperated Microsurgical Robot and Associated Virtual Environment for Eye Surgery

1993 ◽  
Vol 2 (4) ◽  
pp. 265-280 ◽  
Author(s):  
Ian W. Hunter ◽  
Tilemachos D. Doukoglou ◽  
Serge R. Lafontaine ◽  
Paul G. Charette ◽  
Lynette A. Jones ◽  
...  

We have developed a prototype teleoperated microsurgical robot (MSR-1) and associated virtual environment for eye surgery. Bidirectional pathways relay visual, auditory, and mechanical information between the MSR-1 master and slave. The surgeon wears a helmet (visual master) that is used to control the orientation of a stereo camera system (visual slave) observing the surgery. Images from the stereo camera system are relayed back to the helmet (or adjacent screen) where they are viewed by the surgeon. In each hand the surgeon holds a pseudotool (a shaft shaped like a microsurgical scalpel) that projects from the left and right limbs of a force reflecting interface (mechanical master). Movements of the left and right pseudotools cause corresponding movements (scaled down by 1 to 100 times) in the microsurgical tools held by the left and right limbs of the micromotion robot (mechanical slave) that performs the surgery. Forces exerted on the left and right limbs of the slave microsurgical robot via the microtools are reflected back (after being scaled up by 1 to 100 times) to the pseudotools and hence surgeon via actuators in the left and right limbs of the mechanical master. This system enables tissue cutting forces to be felt including those that would normally be imperceptible if they were transmitted directly to the surgeon's hands. The master and slave subsystems (visual, auditory, and mechanical) communicate through a computer system which serves to enhance and augment images, filter hand tremor, perform coordinate transformations, and perform safety checks. The computer system consists of master and slave computers that communicate via an optical fiber connection. As a result, the MSR-1 master and slave may be located at different sites, which permits remote robotic microsurgery to become a reality. MSR-1 is being used as an experimental testbed for studying the effects of feedforward and feedback delays on remote surgery and is used in research on enhancing the accuracy and dexterity of microsurgeons by creating mechanical and visual telepresence.

2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Pathum Rathnayaka ◽  
Seung-Hae Baek ◽  
Soon-Yong Park

We present two simple approaches to calibrate a stereo camera setup with heterogeneous lenses: a wide-angle fish-eye lens and a narrow-angle lens in left and right sides, respectively. Instead of using a conventional black-white checkerboard pattern, we design an embedded checkerboard pattern by combining two differently colored patterns. In both approaches, we split the captured stereo images into RGB channels and extract R and inverted G channels from left and right camera images, respectively. In our first approach, we consider the checkerboard pattern as the world coordinate system and calculate left and right transformation matrices corresponding to it. We use these two transformation matrices to estimate the relative pose of the right camera by multiplying the inversed left transformation with the right. In the second approach, we calculate a planar homography transformation to identify common object points in left-right image pairs and treat them with the well-known Zhangs camera calibration method. We analyze the robustness of these two approaches by comparing reprojection errors and image rectification results. Experimental results show that the second method is more accurate than the first one.


2007 ◽  
Author(s):  
Satoshi Katahira ◽  
Eiji Shibata ◽  
Tatsuhiko Monji
Keyword(s):  

2021 ◽  
Vol 15 (03) ◽  
pp. 337-357
Author(s):  
Alexander Julian Golkowski ◽  
Marcus Handte ◽  
Peter Roch ◽  
Pedro J. Marrón

For many application areas such as autonomous navigation, the ability to accurately perceive the environment is essential. For this purpose, a wide variety of well-researched sensor systems are available that can be used to detect obstacles or navigation targets. Stereo cameras have emerged as a very versatile sensing technology in this regard due to their low hardware cost and high fidelity. Consequently, much work has been done to integrate them into mobile robots. However, the existing literature focuses on presenting the concepts and algorithms used to implement the desired robot functions on top of a given camera setup. As a result, the rationale and impact of choosing this camera setup are usually neither discussed nor described. Thus, when designing the stereo camera system for a mobile robot, there is not much general guidance beyond isolated setups that worked for a specific robot. To close the gap, this paper studies the impact of the physical setup of a stereo camera system in indoor environments. To do this, we present the results of an experimental analysis in which we use a given software setup to estimate the distance to an object while systematically changing the camera setup. Thereby, we vary the three main parameters of the physical camera setup, namely the angle and distance between the cameras as well as the field of view and a rather soft parameter, the resolution. Based on the results, we derive several guidelines on how to choose the parameters for an application.


Mechatronics ◽  
2011 ◽  
Vol 21 (2) ◽  
pp. 390-398 ◽  
Author(s):  
Martin Lauer ◽  
Miriam Schönbein ◽  
Sascha Lange ◽  
Stefan Welker
Keyword(s):  

Author(s):  
Tushar H. Dani ◽  
Rajit Gadh

Abstract This paper describes the development of a computer system architecture for mechanical conceptual shape design within a virtual environment — COVIRDS1 (COnceptual VIRtual Design System).


Optik ◽  
2020 ◽  
Vol 204 ◽  
pp. 164186
Author(s):  
Fengkai Ke ◽  
Huanping Liu ◽  
Daxing Zhao ◽  
Guodong Sun ◽  
Wan Xu ◽  
...  

2019 ◽  
Vol 9 (10) ◽  
pp. 2020 ◽  
Author(s):  
Roi Méndez ◽  
Enrique Castelló ◽  
José Ramón Ríos Viqueira ◽  
Julián Flores

A virtual TV set combines actors and objects with computer-generated virtual environments in real time. Nowadays, this technology is widely used in television broadcasts and cinema productions. A virtual TV set consists of three main elements: the stage, the computer-system and the chroma-keyer. The stage is composed by a monochrome cyclorama (the background) in front of which actors and objects are located (the foreground). The computer-system generates the virtual elements that will form the virtual environment. The chroma-keyer combines the elements in the foreground with the computer-generated environments by erasing the monochrome background and insetting the synthetic elements using the chroma-keying technique. In order to ease the background removal, the cyclorama illumination must be diffuse and homogeneous, avoiding the hue differences that are introduced by shadows, shines and over-lighted areas. The analysis of this illumination is usually performed manually by an expert using a photometer which makes the process slow, tedious and dependent on the experience of the operator. In this paper, a new calibration process to check and improve the homogeneity of a cyclorama’s illumination by non-experts using a custom software which provides both visual information and statistical data, is presented. This calibration process segments a cyclorama image in regions with similar luminance and calculates the centroid of each of them. The statistical study of the variation in the size of the regions and the position of the centroids are the key tools used to determine the homogeneity of the cyclorama lighting.


Sign in / Sign up

Export Citation Format

Share Document