Modeling Prehension for Physical Collaboration in Virtual Environments

2011 ◽  
Vol 20 (6) ◽  
pp. 577-590
Author(s):  
Patrick J. Grabowski ◽  
Drew N. Rutherford ◽  
Andrea H. Mason

The modeling of human movement is vital for a complete understanding of complex human–computer interaction. As three-dimensional collaborative tangible user interfaces (TUIs) evolve, research is needed to understand how people physically interact with each other within a virtual environment. Previous study of physical collaboration in virtual environments has utilized Fitts' law to model gross upper-extremity movement in a passing task. However, no study has modeled passing tasks that require precision grasp with the human hand, an important feature of human–computer interaction in TUIs. The purpose of this study was to evaluate the validity of Fitts' law in modeling movement time for a precision passing task in a 3D TUI, and to assess the coordination between passer and receiver using kinematic parameters. In this experiment, 12 participants (six male, mean age 22.6 years) performed a prehensile passing task within a desktop virtual environment. Results detail the kinematic events required to achieve the necessary temporal and spatial coordination specific to the passing task. Further, results indicate that Fitts' model does not adequately explain movement time for this task (R 2 = .51). This finding challenges the external validity of previous results. We argue that the task-specific complexity of human neuromotor control should be considered when using predictive models in 3D TUI design.

Author(s):  
Rocco Servidio ◽  
Barry Davies ◽  
Kevin Hapeshi

Human-Computer Interaction (HCI) studies play an important role in the design, implementation, and evaluation of a new generation of graphical user interfaces designed to support consumer behaviours and information needs. In recent years, the spread of new virtual environments and innovative tools have revolutionized the field of e-commerce. Although new digital environments can enable or facilitate certain user activities, the quality of the user interface will remain a continuing challenge. The chapter aims to underline the relationships between HCI studies and consumer behaviour, focusing attention on virtual environments for electronic and Internet e-commerce (online retail) services. The potential of multi-modal interfaces and virtual environments for business and marketing are examined by: (1) providing an overview of the relationships between HCI and consumer behaviour, (2) showing how different interaction modalities can enhance the communication process between user and consumer system, (3) showing how digital and interactive technologies can offer to the consumer many advantages and unique opportunities in exploring information and products, and (4) new directions for possible future research.


Author(s):  
Rocco Servidio ◽  
Barry Davies ◽  
Kevin Hapeshi

Human-Computer Interaction (HCI) studies play an important role in the design, implementation, and evaluation of a new generation of graphical user interfaces designed to support consumer behaviours and information needs. In recent years, the spread of new virtual environments and innovative tools have revolutionized the field of e-commerce. Although new digital environments can enable or facilitate certain user activities, the quality of the user interface will remain a continuing challenge. The chapter aims to underline the relationships between HCI studies and consumer behaviour, focusing attention on virtual environments for electronic and Internet e-commerce (online retail) services. The potential of multi-modal interfaces and virtual environments for business and marketing are examined by: (1) providing an overview of the relationships between HCI and consumer behaviour, (2) showing how different interaction modalities can enhance the communication process between user and consumer system, (3) showing how digital and interactive technologies can offer to the consumer many advantages and unique opportunities in exploring information and products, and (4) new directions for possible future research.


2015 ◽  
pp. 1592-1611
Author(s):  
Rocco Servidio ◽  
Barry Davies ◽  
Kevin Hapeshi

Human-Computer Interaction (HCI) studies play an important role in the design, implementation, and evaluation of a new generation of graphical user interfaces designed to support consumer behaviours and information needs. In recent years, the spread of new virtual environments and innovative tools have revolutionized the field of e-commerce. Although new digital environments can enable or facilitate certain user activities, the quality of the user interface will remain a continuing challenge. The chapter aims to underline the relationships between HCI studies and consumer behaviour, focusing attention on virtual environments for electronic and Internet e-commerce (online retail) services. The potential of multi-modal interfaces and virtual environments for business and marketing are examined by: (1) providing an overview of the relationships between HCI and consumer behaviour, (2) showing how different interaction modalities can enhance the communication process between user and consumer system, (3) showing how digital and interactive technologies can offer to the consumer many advantages and unique opportunities in exploring information and products, and (4) new directions for possible future research.


2009 ◽  
pp. 1388-1401
Author(s):  
Daria Loi

This chapter proposes that, as approaches to human computer interaction (HCI), tangible user interfaces (TUIs) can scaffold rich classroom experiences if they are coupled and generated within multi-pedagogical frameworks that adopt concepts such as Multimodality, Multisensoriality, and Multiliteracies. It overviews some necessary conditions for these tools to be effective, arguing that tangible user interfaces and multi-pedagogies are efficient when they are conceptualized as part of adaptive educational environments—teaching and learning ecologies where learners and teachers are seen as co-creators of content and of new ways of interacting with such content.


Author(s):  
D. Loi

This chapter proposes that, as approaches to human computer interaction (HCI), tangible user interfaces (TUIs) can scaffold rich classroom experiences if they are coupled and generated within multi-pedagogical frameworks that adopt concepts such as Multimodality, Multisensoriality, and Multiliteracies. It overviews some necessary conditions for these tools to be effective, arguing that tangible user interfaces and multi-pedagogies are efficient when they are conceptualized as part of adaptive educational environments—teaching and learning ecologies where learners and teachers are seen as co-creators of content and of new ways of interacting with such content.


Author(s):  
Paul Green

An HFES Task Force is considering if, when, and which, HFES research publications should require the citation of relevant standards, policies, and practices to help translate research into practice. To support the Task Force activities, papers and reports are being written about how to find relevant standards produced by various organizations (e.g., the International Standards Organization, ISO) and the content of those standards. This paper describes the human-computer interaction standards being produced by ISO/IEC Joint Technical Committee 1 (Information Technology). Subcommittees 7 (Software and Systems Engineering) and 35 (User Interfaces), and Technical Committee 159, Subcommittee 4 (Ergonomics of Human-System Interaction), in particular, the contents of the ISO 9241 series and the ISO 2506x series. Also included are instructions on how to find standards using the ISO Browsing Tool and Technical Committee listings, and references to other materials on finding standards and standards-related teaching materials.


2006 ◽  
Vol 3 (1) ◽  
pp. 33-52 ◽  
Author(s):  
Zeljko Obrenovic ◽  
Dusan Starcevic

In this paper we describe how existing software developing processes, such as Rational Unified Process, can be adapted in order to allow disciplined and more efficient development of user interfaces. The main objective of this paper is to demonstrate that standard modeling environments, based on the UML, can be adapted and efficiently used for user interfaces development. We have integrated the HCI knowledge into developing processes by semantically enriching the models created in each of the process activities of the process. By using UML, we can make easier use of HCI knowledge for ordinary software engineers who, usually, are not familiar with results of HCI researches, so these results can have broader and more practical effects. By providing a standard means for representing human computer interaction, we can seamlessly transfer UML models of multimodal interfaces between design and specialized analysis tools. Standardization provides a significant driving force for further progress because it codifies best practices enables and encourages reuse, and facilitates inter working between complementary tools. Proposed solutions can be valuable for software developers, who can improve quality of user interfaces and their communication with user interface designers, as well as for human computer interaction researchers, who can use standard methods to include their results into software developing processes.


2010 ◽  
pp. 180-193 ◽  
Author(s):  
F. Steinicke ◽  
G. Bruder ◽  
J. Jerald ◽  
H. Frenz

In recent years virtual environments (VEs) have become more and more popular and widespread due to the requirements of numerous application areas in particular in the 3D city visualization domain. Virtual reality (VR) systems, which make use of tracking technologies and stereoscopic projections of three-dimensional synthetic worlds, support better exploration of complex datasets. However, due to the limited interaction space usually provided by the range of the tracking sensors, users can explore only a portion of the virtual environment (VE). Redirected walking allows users to walk through large-scale immersive virtual environments (IVEs) such as virtual city models, while physically remaining in a reasonably small workspace by intentionally injecting scene motion into the IVE. With redirected walking users are guided on physical paths that may differ from the paths they perceive in the virtual world. The authors have conducted experiments in order to quantify how much humans can unknowingly be redirected. In this chapter they present the results of this study and the implications for virtual locomotion user interfaces that allow users to view arbitrary real world locations, before the users actually travel there in a natural environment.


Author(s):  
Shirley Ann Becker

The study of computing technology and user interfaces was initiated during the 1970s when industrial research laboratories began to focus on human-computer interaction (HCI) (Badre, 2002). In the 1980s, the personal computer was introduced, thus expanding the need for designing effective user interfaces. HCI became a discipline during this time, and the Association for Computing Machinery (ACM) established the Special Interest Group in Computer Human Interaction. One of the first textbooks on HCI, Designing the User Interface: Strategies for Effective Human-Computer Interaction (Schneiderman, 19891), was published. Shortly thereafter, HCI became part of the ACM curriculum promoting the development of effective user interfaces. Software tools were developed in order to assist in designing usable interfaces while employing usability engineering methods. Many of these methods focused on usability from the perspective of ease of use, ease of learning, user satisfaction, and zero defects (Nielsen, 1993).


Sign in / Sign up

Export Citation Format

Share Document