Web Usability

Author(s):  
Shirley Ann Becker

The study of computing technology and user interfaces was initiated during the 1970s when industrial research laboratories began to focus on human-computer interaction (HCI) (Badre, 2002). In the 1980s, the personal computer was introduced, thus expanding the need for designing effective user interfaces. HCI became a discipline during this time, and the Association for Computing Machinery (ACM) established the Special Interest Group in Computer Human Interaction. One of the first textbooks on HCI, Designing the User Interface: Strategies for Effective Human-Computer Interaction (Schneiderman, 19891), was published. Shortly thereafter, HCI became part of the ACM curriculum promoting the development of effective user interfaces. Software tools were developed in order to assist in designing usable interfaces while employing usability engineering methods. Many of these methods focused on usability from the perspective of ease of use, ease of learning, user satisfaction, and zero defects (Nielsen, 1993).

Author(s):  
Shirley Ann Becker

The study of computing technology and user interfaces was initiated during the 1970s when industrial research laboratories began to focus on human-computer interaction (HCI) (Badre, 2002). In the 1980s, the personal computer was introduced, thus expanding the need for designing effective user interfaces. HCI became a discipline during this time, and the Association for Computing Machinery (ACM) established the Special Interest Group in Computer Human Interaction. One of the first textbooks on HCI, Designing the User Interface: Strategies for Effective Human-Computer Interaction (Schneiderman, 19891), was published. Shortly thereafter, HCI became part of the ACM curriculum promoting the development of effective user interfaces. Software tools were developed in order to assist in designing usable interfaces while employing usability engineering methods. Many of these methods focused on usability from the perspective of ease of use, ease of learning, user satisfaction, and zero defects (Nielsen, 1993). The World Wide Web (Web) became an integral part of HCI research in the 1990s, as organizations rushed to deploy a corporate Web site. Many of these Web sites took advantage of cutting-edge technology, including graphics and animation, with little regard for the impact on the user. As a result, users became disgruntled by lengthy download times, complex navigation schemes, nonintuitive search mechanisms, and disorganized content.


2006 ◽  
Vol 3 (1) ◽  
pp. 33-52 ◽  
Author(s):  
Zeljko Obrenovic ◽  
Dusan Starcevic

In this paper we describe how existing software developing processes, such as Rational Unified Process, can be adapted in order to allow disciplined and more efficient development of user interfaces. The main objective of this paper is to demonstrate that standard modeling environments, based on the UML, can be adapted and efficiently used for user interfaces development. We have integrated the HCI knowledge into developing processes by semantically enriching the models created in each of the process activities of the process. By using UML, we can make easier use of HCI knowledge for ordinary software engineers who, usually, are not familiar with results of HCI researches, so these results can have broader and more practical effects. By providing a standard means for representing human computer interaction, we can seamlessly transfer UML models of multimodal interfaces between design and specialized analysis tools. Standardization provides a significant driving force for further progress because it codifies best practices enables and encourages reuse, and facilitates inter working between complementary tools. Proposed solutions can be valuable for software developers, who can improve quality of user interfaces and their communication with user interface designers, as well as for human computer interaction researchers, who can use standard methods to include their results into software developing processes.


2020 ◽  
Vol 30 (5) ◽  
pp. 949-982 ◽  
Author(s):  
Henrietta Jylhä ◽  
Juho Hamari

Abstract Graphical user interfaces are widely common and present in everyday human–computer interaction, dominantly in computers and smartphones. Today, various actions are performed via graphical user interface elements, e.g., windows, menus and icons. An attractive user interface that adapts to user needs and preferences is progressively important as it often allows personalized information processing that facilitates interaction. However, practitioners and scholars have lacked an instrument for measuring user perception of aesthetics within graphical user interface elements to aid in creating successful graphical assets. Therefore, we studied dimensionality of ratings of different perceived aesthetic qualities in GUI elements as the foundation for the measurement instrument. First, we devised a semantic differential scale of 22 adjective pairs by combining prior scattered measures. We then conducted a vignette experiment with random participant (n = 569) assignment to evaluate 4 icons from a total of pre-selected 68 game app icons across 4 categories (concrete, abstract, character and text) using the semantic scales. This resulted in a total of 2276 individual icon evaluations. Through exploratory factor analyses, the observations converged into 5 dimensions of perceived visual quality: Excellence/Inferiority, Graciousness/Harshness, Idleness/Liveliness, Normalness/Bizarreness and Complexity/Simplicity. We then proceeded to conduct confirmatory factor analyses to test the model fit of the 5-factor model with all 22 adjective pairs as well as with an adjusted version of 15 adjective pairs. Overall, this study developed, validated, and consequently presents a measurement instrument for perceptions of visual qualities of graphical user interfaces and/or singular interface elements (VISQUAL) that can be used in multiple ways in several contexts related to visual human-computer interaction, interfaces and their adaption.


Author(s):  
Andrea Jovanovic ◽  
Olivier St-Cyr ◽  
Mark Chignell

Abstract –The Association of Computing Machinery (ACM) Special Interest Group on Computer-Human Interaction (SIGCHI) has been supporting research into HCI education for many years, most actively in the last six years. At its CHI2014 conference, a workshop on developing a new Human-Computer Interaction (HCI) living curriculum was held, building on three years of research and collaboration. We believe the time is now right to design and build the proposed HCI living curriculum. This paper proposes the preliminary framework for a concrete active social network of HCI scholars and educators, sharing and collaborating to develop course outlines, curricula, and teaching materials. In particular, this paper presents the use cases and design requirements of the HCI living curriculum, based on data collected from HCI educators and practitioners. Future initiatives to move the designforward by prototyping a first version of the living curriculum are also discussed.  


2009 ◽  
pp. 448-464
Author(s):  
Kenia Sousa ◽  
Albert Schilling ◽  
Elizabeth Furtado

We present artifacts and techniques used for user interface (UI) design and evaluation, performed by professionals from the human-computer interaction (HCI) area of study, covering usability engineering and semiotic engineering, which can assist software engineering (SE) to perform usability tests starting earlier in the process. Tests of various interaction alternatives, produced from these artifacts, are useful to verify if these alternatives are in accordance with users’ preferences and constraints, and usability patterns, and can enhance the probability of achieving a more usable and reliable product.


1987 ◽  
Vol 16 (224) ◽  
Author(s):  
Susanne Bødker

<p>This dissertation discusses human-computer interaction, and the role of user interfaces in use and design from the point-of-view of human activity theory. Human-computer interaction conducted in purposeful human work is in focus. The main idea is that a computer application, from the user's perspective, is not something that the user operates on but something that the user operates through on other objects or subjects.</p><p>The contents of the report is the following: Danish Summary; Introduction; Human Activity and Human-Computer Interaction; User Interface Design -- the Empirical Cases; User Interfaces; Methods for User Interface Design; User Interface Design -- Advice to the Designer.</p>


2009 ◽  
pp. 2307-2324
Author(s):  
Kenia Sousa ◽  
Albert Schilling ◽  
Elizabeth Furtado

We present artifacts and techniques used for user interface (UI) design and evaluation, performed by professionals from the human-computer interaction (HCI) area of study, covering usability engineering and semiotic engineering, which can assist software engineering (SE) to perform usability tests starting earlier in the process. Tests of various interaction alternatives, produced from these artifacts, are useful to verify if these alternatives are in accordance with users’ preferences and constraints, and usability patterns, and can enhance the probability of achieving a more usable and reliable product.


Author(s):  
Kenia Sousa ◽  
Albert Schilling ◽  
Elizabeth Furtado

We present artifacts and techniques used for user interface (UI) design and evaluation, performed by professionals from the human-computer interaction (HCI) area of study, covering usability engineering and semiotic engineering, which can assist software engineering (SE) to perform usability tests starting earlier in the process. Tests of various interaction alternatives, produced from these artifacts, are useful to verify if these alternatives are in accordance with users’ preferences and constraints, and usability patterns, and can enhance the probability of achieving a more usable and reliable product.


Author(s):  
Paul Green

An HFES Task Force is considering if, when, and which, HFES research publications should require the citation of relevant standards, policies, and practices to help translate research into practice. To support the Task Force activities, papers and reports are being written about how to find relevant standards produced by various organizations (e.g., the International Standards Organization, ISO) and the content of those standards. This paper describes the human-computer interaction standards being produced by ISO/IEC Joint Technical Committee 1 (Information Technology). Subcommittees 7 (Software and Systems Engineering) and 35 (User Interfaces), and Technical Committee 159, Subcommittee 4 (Ergonomics of Human-System Interaction), in particular, the contents of the ISO 9241 series and the ISO 2506x series. Also included are instructions on how to find standards using the ISO Browsing Tool and Technical Committee listings, and references to other materials on finding standards and standards-related teaching materials.


Sign in / Sign up

Export Citation Format

Share Document