scholarly journals Geometric vs. traditional morphometric methods for exploring morphological variation of tadpoles at early developmental stages

2019 ◽  
Vol 40 (4) ◽  
pp. 499-509
Author(s):  
Marija Ilić ◽  
Vida Jojić ◽  
Gorana Stamenković ◽  
Vanja Marković ◽  
Vladica Simić ◽  
...  

Abstract We conducted a comparative (2D landmark-based geometric and traditional) morphometric analysis on tadpoles at early developmental stages. Two species of brown frog (Rana dalmatina and R. temporaria) and the common toad (Bufo bufo) were involved, all raised in the laboratory from fertilized eggs collected in their natural habitat. Taxonomic identification was confirmed by the DNA barcoding method with the 16S rRNA sequence as the gene marker. Interested to compare the methodologies for quantification and description of morphological differences among tadpoles of mentioned species, we aimed to: 1) calculate interspecies genetic distances as the most relevant measurement for species differentiation, 2) determine and describe size and shape variation, 3) identify relationships among the analyzed species at the morphological level and 4) assess their classification accuracy. Within the framework of the specified aims, both methodologies produced very similar results, i.e., the smallest divergence was between R. dalmatina and R. temporaria, while the most discriminative were B. bufo and R. temporaria. However, we observed subtle shape variation of the distal region of the tail that was detected only by the geometric morphometrics. Our findings support the following. Geometric morphometric method captures more subtle shape differences that were unable to be recovered from linear measurements. It performs slightly better in classification rate. Although it was not quantified, it stands to reason that there is no difference in time investment between the two approaches. Geometric morphometrics provides more information that can be leveraged to answer further questions and it has a clear advantage in visualizing.

2017 ◽  
Vol 186 (1) ◽  
pp. 103-112
Author(s):  
Lukáš Laibl ◽  
Oldřich Fatka

This contribution briefly summarizes the history of research, modes of preservation and stratigraphic distribution of 51 trilobite and five agnostid taxa from the Barrandian area, for which the early developmental stages have been described.


2021 ◽  
Vol 22 (3) ◽  
pp. 1210
Author(s):  
Krzysztof Formicki ◽  
Agata Korzelecka-Orkisz ◽  
Adam Tański

The number of sources of anthropogenic magnetic and electromagnetic fields generated by various underwater facilities, industrial equipment, and transferring devices in aquatic environment is increasing. These have an effect on an array of fish life processes, but especially the early developmental stages. The magnitude of these effects depends on field strength and time of exposure and is species-specific. We review studies on the effect of magnetic fields on the course of embryogenesis, with special reference to survival, the size of the embryos, embryonic motor function, changes in pigment cells, respiration hatching, and directional reactions. We also describe the effect of magnetic fields on sperm motility and egg activation. Magnetic fields can exert positive effects, as in the case of the considerable extension of sperm capability of activation, or have a negative influence in the form of a disturbance in heart rate or developmental instability in inner ear organs.


Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 638
Author(s):  
Monika Mazur ◽  
Daria Wojciechowska ◽  
Ewa Sitkiewicz ◽  
Agata Malinowska ◽  
Bianka Świderska ◽  
...  

The slime mold Dictyostelium discoideum’s life cycle includes different unicellular and multicellular stages that provide a convenient model for research concerning intracellular and intercellular mechanisms influencing mitochondria’s structure and function. We aim to determine the differences between the mitochondria isolated from the slime mold regarding its early developmental stages induced by starvation, namely the unicellular (U), aggregation (A) and streams (S) stages, at the bioenergetic and proteome levels. We measured the oxygen consumption of intact cells using the Clarke electrode and observed a distinct decrease in mitochondrial coupling capacity for stage S cells and a decrease in mitochondrial coupling efficiency for stage A and S cells. We also found changes in spare respiratory capacity. We performed a wide comparative proteomic study. During the transition from the unicellular stage to the multicellular stage, important proteomic differences occurred in stages A and S relating to the proteins of the main mitochondrial functional groups, showing characteristic tendencies that could be associated with their ongoing adaptation to starvation following cell reprogramming during the switch to gluconeogenesis. We suggest that the main mitochondrial processes are downregulated during the early developmental stages, although this needs to be verified by extending analogous studies to the next slime mold life cycle stages.


Sign in / Sign up

Export Citation Format

Share Document