scholarly journals Mitochondrial Processes during Early Development of Dictyostelium discoideum: From Bioenergetic to Proteomic Studies

Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 638
Author(s):  
Monika Mazur ◽  
Daria Wojciechowska ◽  
Ewa Sitkiewicz ◽  
Agata Malinowska ◽  
Bianka Świderska ◽  
...  

The slime mold Dictyostelium discoideum’s life cycle includes different unicellular and multicellular stages that provide a convenient model for research concerning intracellular and intercellular mechanisms influencing mitochondria’s structure and function. We aim to determine the differences between the mitochondria isolated from the slime mold regarding its early developmental stages induced by starvation, namely the unicellular (U), aggregation (A) and streams (S) stages, at the bioenergetic and proteome levels. We measured the oxygen consumption of intact cells using the Clarke electrode and observed a distinct decrease in mitochondrial coupling capacity for stage S cells and a decrease in mitochondrial coupling efficiency for stage A and S cells. We also found changes in spare respiratory capacity. We performed a wide comparative proteomic study. During the transition from the unicellular stage to the multicellular stage, important proteomic differences occurred in stages A and S relating to the proteins of the main mitochondrial functional groups, showing characteristic tendencies that could be associated with their ongoing adaptation to starvation following cell reprogramming during the switch to gluconeogenesis. We suggest that the main mitochondrial processes are downregulated during the early developmental stages, although this needs to be verified by extending analogous studies to the next slime mold life cycle stages.

Biomolecules ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 702 ◽  
Author(s):  
Megan Aoki ◽  
Anna Kisiala ◽  
Shaojun Li ◽  
Naomi Stock ◽  
Craig Brunetti ◽  
...  

Cytokinins (CKs) are a family of evolutionarily conserved growth regulating hormones. While CKs are well-characterized in plant systems, these N6-substituted adenine derivatives are found in a variety of organisms beyond plants, including bacteria, fungi, mammals, and the social amoeba, Dictyostelium discoideum. Within Dictyostelium, CKs have only been studied in the late developmental stages of the life cycle, where they promote spore encapsulation and dormancy. In this study, we used ultra high-performance liquid chromatography-positive electrospray ionization-high resolution tandem mass spectrometry (UHPLC-(ESI+)-HRMS/MS) to profile CKs during the Dictyostelium life cycle: growth, aggregation, mound, slug, fruiting body, and germination. Comprehensive profiling revealed that Dictyostelium produces 6 CK forms (cis-Zeatin (cZ), discadenine (DA), N6-isopentenyladenine (iP), N6-isopentenyladenine-9-riboside (iPR), N6-isopentenyladenine-9-riboside-5′ phosphate (iPRP), and 2-methylthio-N6-isopentenyladenine (2MeSiP)) in varying abundance across the sampled life cycle stages, thus laying the foundation for the CK biosynthesis pathway to be defined in this organism. Interestingly, iP-type CKs were the most dominant CK analytes detected during growth and aggregation. Exogenous treatment of AX3 cells with various CK types revealed that iP was the only CK to promote the proliferation of cells in culture. In support of previous studies, metabolomics data revealed that DA is one of the most significantly upregulated small molecules during Dictyostelium development, and our data indicates that total CK levels are highest during germination. While much remains to be explored in Dictyostelium, this research offers new insight into the nature of CK biosynthesis, secretion, and function during Dictyostelium growth, development, and spore germination.


2017 ◽  
Vol 186 (1) ◽  
pp. 103-112
Author(s):  
Lukáš Laibl ◽  
Oldřich Fatka

This contribution briefly summarizes the history of research, modes of preservation and stratigraphic distribution of 51 trilobite and five agnostid taxa from the Barrandian area, for which the early developmental stages have been described.


2021 ◽  
Vol 22 (3) ◽  
pp. 1210
Author(s):  
Krzysztof Formicki ◽  
Agata Korzelecka-Orkisz ◽  
Adam Tański

The number of sources of anthropogenic magnetic and electromagnetic fields generated by various underwater facilities, industrial equipment, and transferring devices in aquatic environment is increasing. These have an effect on an array of fish life processes, but especially the early developmental stages. The magnitude of these effects depends on field strength and time of exposure and is species-specific. We review studies on the effect of magnetic fields on the course of embryogenesis, with special reference to survival, the size of the embryos, embryonic motor function, changes in pigment cells, respiration hatching, and directional reactions. We also describe the effect of magnetic fields on sperm motility and egg activation. Magnetic fields can exert positive effects, as in the case of the considerable extension of sperm capability of activation, or have a negative influence in the form of a disturbance in heart rate or developmental instability in inner ear organs.


Sign in / Sign up

Export Citation Format

Share Document