Fine structure and invasive behaviour of the early developmental stages of Theileria annulata in vitro

1983 ◽  
Vol 12 (1) ◽  
pp. 31-44 ◽  
Author(s):  
W.G.Z.O. Jura ◽  
C.G.D. Brown ◽  
B. Kelly
2019 ◽  
Vol 126 ◽  
pp. 230-238 ◽  
Author(s):  
Mohammed A. El-Magd ◽  
Amany M. Ghoniem ◽  
Nashwa M. Helmy ◽  
Ahmed Abdelfattah-Hassan ◽  
Ayman A. Saleh ◽  
...  

2014 ◽  
Author(s):  
Ayuko Uchikura ◽  
Hitomi Matsunari ◽  
Kazuaki Nakano ◽  
Yukina Matsumura ◽  
Shota Hatae ◽  
...  

2017 ◽  
Vol 1 (4) ◽  
pp. 1-7
Author(s):  
Rashida Abusin ◽  
Amani Eltayeb ◽  
Mohammed Hassan ◽  
Nahid Khalil ◽  
Ismail Elmunsor ◽  
...  

Development ◽  
2020 ◽  
Vol 147 (16) ◽  
pp. dev189845 ◽  
Author(s):  
Alba Redó Riveiro ◽  
Joshua Mark Brickman

ABSTRACTEmbryonic stem cells (ESCs) are derived from the pre-implantation mammalian blastocyst. At this point in time, the newly formed embryo is concerned with the generation and expansion of both the embryonic lineages required to build the embryo and the extra-embryonic lineages that support development. When used in grafting experiments, embryonic cells from early developmental stages can contribute to both embryonic and extra-embryonic lineages, but it is generally accepted that ESCs can give rise to only embryonic lineages. As a result, they are referred to as pluripotent, rather than totipotent. Here, we consider the experimental potential of various ESC populations and a number of recently identified in vitro culture systems producing states beyond pluripotency and reminiscent of those observed during pre-implantation development. We also consider the nature of totipotency and the extent to which cell populations in these culture systems exhibit this property.


Author(s):  
J. P. Revel

Movement of individual cells or of cell sheets and complex patterns of folding play a prominent role in the early developmental stages of the embryo. Our understanding of these processes is based on three- dimensional reconstructions laboriously prepared from serial sections, and from autoradiographic and other studies. Many concepts have also evolved from extrapolation of investigations of cell movement carried out in vitro. The scanning electron microscope now allows us to examine some of these events in situ. It is possible to prepare dissections of embryos and even of tissues of adult animals which reveal existing relationships between various structures more readily than used to be possible vithout an SEM.


2017 ◽  
Vol 186 (1) ◽  
pp. 103-112
Author(s):  
Lukáš Laibl ◽  
Oldřich Fatka

This contribution briefly summarizes the history of research, modes of preservation and stratigraphic distribution of 51 trilobite and five agnostid taxa from the Barrandian area, for which the early developmental stages have been described.


2021 ◽  
Vol 22 (3) ◽  
pp. 1210
Author(s):  
Krzysztof Formicki ◽  
Agata Korzelecka-Orkisz ◽  
Adam Tański

The number of sources of anthropogenic magnetic and electromagnetic fields generated by various underwater facilities, industrial equipment, and transferring devices in aquatic environment is increasing. These have an effect on an array of fish life processes, but especially the early developmental stages. The magnitude of these effects depends on field strength and time of exposure and is species-specific. We review studies on the effect of magnetic fields on the course of embryogenesis, with special reference to survival, the size of the embryos, embryonic motor function, changes in pigment cells, respiration hatching, and directional reactions. We also describe the effect of magnetic fields on sperm motility and egg activation. Magnetic fields can exert positive effects, as in the case of the considerable extension of sperm capability of activation, or have a negative influence in the form of a disturbance in heart rate or developmental instability in inner ear organs.


Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 638
Author(s):  
Monika Mazur ◽  
Daria Wojciechowska ◽  
Ewa Sitkiewicz ◽  
Agata Malinowska ◽  
Bianka Świderska ◽  
...  

The slime mold Dictyostelium discoideum’s life cycle includes different unicellular and multicellular stages that provide a convenient model for research concerning intracellular and intercellular mechanisms influencing mitochondria’s structure and function. We aim to determine the differences between the mitochondria isolated from the slime mold regarding its early developmental stages induced by starvation, namely the unicellular (U), aggregation (A) and streams (S) stages, at the bioenergetic and proteome levels. We measured the oxygen consumption of intact cells using the Clarke electrode and observed a distinct decrease in mitochondrial coupling capacity for stage S cells and a decrease in mitochondrial coupling efficiency for stage A and S cells. We also found changes in spare respiratory capacity. We performed a wide comparative proteomic study. During the transition from the unicellular stage to the multicellular stage, important proteomic differences occurred in stages A and S relating to the proteins of the main mitochondrial functional groups, showing characteristic tendencies that could be associated with their ongoing adaptation to starvation following cell reprogramming during the switch to gluconeogenesis. We suggest that the main mitochondrial processes are downregulated during the early developmental stages, although this needs to be verified by extending analogous studies to the next slime mold life cycle stages.


Sign in / Sign up

Export Citation Format

Share Document