Sperm morphology of Batrachyla (Anura: Leptodactylidae)

1989 ◽  
Vol 10 (2) ◽  
pp. 141-149 ◽  
Author(s):  
Boris Jorquera ◽  
Orlando Garrido ◽  
Emilio Pugin

AbstractThe structure of immature and mature sperm of the three species of Batrachyla were compared by using smears for light microscopy and ultrathin sections for transmission electron microscopy. Minor differences in length and some ultrastructural details support the notion that B. antartandica and B, taeniata are more closely related to each other than to B. leptopus. Comparisons of the sperm of Batrachyla with those of other anurans suggest the sperm morphology may be correlated with broad phylogenetic relationships as well as mode of fertilization.

2018 ◽  
Vol 47 (3) ◽  
pp. 401-407 ◽  
Author(s):  
Atsushi Isobe ◽  
Kouichi Iwatani ◽  
Junko Souba ◽  
Hisako Terao ◽  
Hitomi Hagiwara ◽  
...  

We have developed a new method for obtaining information on whole tissues by light microscopy (LM) and ultrastructural features by transmission electron microscopy (TEM). This method uses serial sections of a stented artery embedded in resin. Stents were implanted in porcine coronary arteries in this study. The heart was perfusion fixed in a 2% paraformaldehyde and 1.25% glutaraldehyde mixed solution. The stented artery was then removed, fixed in 1% osmium, embedded in Quetol 651 resin, and sectioned serially. For LM, the black color of osmium was removed from the section by immersion in periodic acid and hydrogen peroxide after deplasticization. These sections were stained with hematoxylin and eosin and Elastica–Masson trichrome stain. For TEM, thin sections were re-embedded in Quetol 812 resin by the resupinate method and cut into ultrathin sections. A clear, fine structure was obtained, and organelles, microvilli, and cell junctions in the endothelium were easily observed. The combined observation of adjacent specimens by LM and TEM enabled us to relate histopathological changes in the millimeter scale to those in the nanometer scale.


Author(s):  
Nakazo Watari ◽  
Yasuaki Hotta ◽  
Yoshio Mabuchi

It is very useful if we can observe the identical cell elements within the same sections by light microscopy (LM), transmission electron microscopy (TEM) and/or scanning electron microscopy (SEM) sequentially, because, the cell fine structure can not be indicated by LM, while the color is; on the other hand, the cell fine structure can be very easily observed by EM, although its color properties may not. However, there is one problem in that LM requires thick sections of over 1 μm, while EM needs very thin sections of under 100 nm. Recently, we have developed a new method to observe the same cell elements within the same plastic sections using both light and transmission (conventional or high-voltage) electron microscopes.In this paper, we have developed two new observation methods for the identical cell elements within the same sections, both plastic-embedded and paraffin-embedded, using light microscopy, transmission electron microscopy and/or scanning electron microscopy (Fig. 1).


Author(s):  
Bruce Mackay

The broadest application of transmission electron microscopy (EM) in diagnostic medicine is the identification of tumors that cannot be classified by routine light microscopy. EM is useful in the evaluation of approximately 10% of human neoplasms, but the extent of its contribution varies considerably. It may provide a specific diagnosis that can not be reached by other means, but in contrast, the information obtained from ultrastructural study of some 10% of tumors does not significantly add to that available from light microscopy. Most cases fall somewhere between these two extremes: EM may correct a light microscopic diagnosis, or serve to narrow a differential diagnosis by excluding some of the possibilities considered by light microscopy. It is particularly important to correlate the EM findings with data from light microscopy, clinical examination, and other diagnostic procedures.


Author(s):  
Kenichi Takaya

Mast cell and basophil granules of the vertebrate contain heparin or related sulfated proteoglycans. Histamine is also present in mammalian mast cells and basophils. However, no histamine is detected in mast cell granules of the amphibian or fish, while it is shown in those of reptiles and birds A quantitative x-ray microanalysis of mast cell granules of fresh frozen dried ultrathin sections of the tongue of Wistar rats and tree frogs disclosed high concentrations of sulfur in rat mast cell granules and those of sulfur and magnesium in the tree frog granules. Their concentrations in tree frog mast cell granules were closely correlated (r=0.94).Fresh frozen dried ultrathin sections and fresh air-dried prints of the tree frog tongue and spleen and young red-eared turtle (ca. 6 g) spleen and heart blood were examined by a quantitative energy-dispersive x-ray microanalysis (X-650, Kevex-7000) for the element constituents of the granules of mast cells and basophils. The specimens were observed by transmission electron microscopy (TEM) (80-200 kV) and followed by scanning transmission electron microscopy (STEM) under an analytical electron microscope (X-650) at an acceleration voltage of 40 kV and a specimen current of 0.2 nA. A spot analysis was performed in a STEM mode for 100 s at a specimen current of 2 nA on the mast cell and basophil granules and other areas of the cells. Histamine was examined by the o-phthalaldehyde method.


Author(s):  
George Guthrie ◽  
David Veblen

The nature of a geologic fluid can often be inferred from fluid-filled cavities (generally <100 μm in size) that are trapped during the growth of a mineral. A variety of techniques enables the fluids and daughter crystals (any solid precipitated from the trapped fluid) to be identified from cavities greater than a few micrometers. Many minerals, however, contain fluid inclusions smaller than a micrometer. Though inclusions this small are difficult or impossible to study by conventional techniques, they are ideally suited for study by analytical/ transmission electron microscopy (A/TEM) and electron diffraction. We have used this technique to study fluid inclusions and daughter crystals in diamond and feldspar.Inclusion-rich samples of diamond and feldspar were ion-thinned to electron transparency and examined with a Philips 420T electron microscope (120 keV) equipped with an EDAX beryllium-windowed energy dispersive spectrometer. Thin edges of the sample were perforated in areas that appeared in light microscopy to be populated densely with inclusions. In a few cases, the perforations were bound polygonal sides to which crystals (structurally and compositionally different from the host mineral) were attached (Figure 1).


2021 ◽  
Vol 123 (6) ◽  
pp. 151761
Author(s):  
Tasuku Hiroshige ◽  
Kei-Ichiro Uemura ◽  
Shingo Hirashima ◽  
Kiyosato Hino ◽  
Akinobu Togo ◽  
...  

Zootaxa ◽  
2018 ◽  
Vol 4521 (1) ◽  
pp. 145
Author(s):  
URFA BIN TAHIR ◽  
DENG QIONG ◽  
WANG ZHE ◽  
LI SEN ◽  
LIU YANG ◽  
...  

Tokophrya species are either free-living or facultative ectosymbiotic suctorians associated with copepods, isopods, mysids, decapods and amphipods. Tokophrya huangmeiensis in particular is found to be epizoic with the redclaw crayfish Cherax quadricarinatus Von Martens, 1868, which has been observed as part of an ongoing investigation of freshwater ciliates biodiversity in Huanggang, Hubei, China (Tahir et al. 2017). This first study on T. huangmeiensis based on morphological features using light microscopy and small subunit ribosomal DNA sequence (Tahir et al. 2017), suggested that more detailed descriptions on the physiological and structural changes of this species should be done. Thus, in this study, we looked at the ultrastructures of T. huangmeiensis using electron microscopy, including both scanning (SEM) and transmission electron microscopy (TEM). 


Phytotaxa ◽  
2015 ◽  
Vol 207 (1) ◽  
pp. 135 ◽  
Author(s):  
Giovanni Raul Bogota ◽  
Carina Hoorn ◽  
Wim Star ◽  
Rob Langelaan ◽  
Hannah Banks ◽  
...  

Sabinaria magnifica is so far the only known species in the recently discovered tropical palm genus Sabinaria (Arecaceae). Here we present a complete description of the pollen morphology of this palm species based on light microscopy (LM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). We also made SEM-based comparisons of Sabinaria with other genera within the tribe Cryosophileae. Pollen grains of Sabinaria magnifica resemble the other genera in the heteropolar, slightly asymmetric monads, and the monosulcate and tectate exine with perforate surface. Nevertheless, there are some clear differences with Thrinax, Chelyocarpus and Cryosophila in terms of aperture and exine. S. magnifica differs from its closest relative, Itaya amicorum, in the exine structure. This study shows that a combination of microscope techniques is essential for the identification of different genera within the Cryosophileae and may also be a necessary when working with other palynologically less distinct palm genera. 


Sign in / Sign up

Export Citation Format

Share Document