Effects of initial slurry concentration distribution on the particle size distribution measured with a sedimentation balance method

2004 ◽  
Vol 15 (2) ◽  
pp. 181-200 ◽  
Author(s):  
Kunihiro Fukui ◽  
Hideto Yoshida ◽  
Tomohiro Higashiguchi
2015 ◽  
Vol 4 (1) ◽  
pp. 30-34
Author(s):  
Rondang Tambun ◽  
Nofriko Pratama ◽  
Ely ◽  
Farida Hanum

Particle size measurement of wheat flour is important in wheat flour industry. There are several methods have been used to measure particle size distribution (PSD) of wheat flour, such as Andreasen pipette method, sedimentation balance method, centrifugal sedimentation method. The disadvantages of these methods are that they are time consuming and require special skills. On the other hand, PSD can be analyzed using a different principle through laser diffraction/scattering methods, and coulter counter method. The laser diffraction/scattering and coulter counter methods produce highly accurate results within a shorter time, but the equipment is extremely expensive. Therefore, a simple and cost-effective new method to determine PSD is in high demand. In this study, we aim to develop a new method to measure the particle size distribution of wheat flour using a buoyancy weighing–bar method. In this method, the density change in a suspension due to particle migration (wheat flour) is measured by weighing buoyancy against a weighing–bar hung in the suspension (etanol/metanol), and the PSD is calculated using the length of the bar and the time–course change in the mass of the bar. This apparatus consists of an analytical balance with a hook for underfloor weighing, and a weighing–bar, which is used to detect the density change in suspension. The result obtained show that the PSD of wheat flour measured by the buoyancy weighing-bar method is comparable to that determined by settling balance method.


2010 ◽  
Vol 64 (5) ◽  
pp. 365-374 ◽  
Author(s):  
Aoyi Ochieng ◽  
Mrice Onyango

Many chemical reactions are carried out using stirred tanks, and the efficiency of such systems depends on the quality of mixing, which has been a subject of research for many years. For solid-liquid mixing, traditionally the research efforts were geared towards determining mixing features such as off-bottom solid suspension using experimental techniques. In a few studies that focused on the determination of solids concentration distribution, some methods that have been used have not been accurate enough to account for some small scale flow mal-distribution such as the existence of dead zones. The present review shows that computational fluid dynamic (CFD) techniques can be used to simulate mixing features such as solids off-bottom suspension, solids concentration and particle size distribution and cloud height. Information on the effects of particle size and particle size distribution on the solids concentration distribution is still scarce. Advancement of the CFD modeling is towards coupling the physical and kinetic data to capture mixing and reaction at meso- and micro-scales. Solids residence time distribution is important for the design; however, the current CFD models do not predict this parameter. Some advances have been made in recent years to apply CFD simulation to systems that involve fermentation and anaerobic processes. In these systems, complex interaction between the biochemical process and the hydrodynamics is still not well understood. This is one of the areas that still need more attention.


2020 ◽  
Vol 69 (4) ◽  
pp. 102-106
Author(s):  
Shota Ohki ◽  
Shingo Mineta ◽  
Mamoru Mizunuma ◽  
Soichi Oka ◽  
Masayuki Tsuda

1995 ◽  
Vol 5 (1) ◽  
pp. 75-87 ◽  
Author(s):  
Christine M. Woodall ◽  
James E. Peters ◽  
Richard O. Buckius

1998 ◽  
Vol 84 (5) ◽  
pp. 387-392 ◽  
Author(s):  
Takashi INOUE ◽  
Yuzo HOSOI ◽  
Koe NAKAJIMA ◽  
Hiroyuki TAKENAKA ◽  
Tomonori HANYUDA

Sign in / Sign up

Export Citation Format

Share Document