Female morphs of a colour polymorphic damselfly differ in developmental instability and fecundity

2009 ◽  
Vol 59 (1) ◽  
pp. 41-54 ◽  
Author(s):  
Robby Stoks ◽  
Stefan Van Dongen ◽  
Jessica Bots ◽  
Hans Van Gossum ◽  
Tim Adriaens ◽  
...  

AbstractSex-limited colour polymorphism occurs in several animal taxa and is usually explained in the context of sexual selection. Specifically, for polymorphism restricted to the female sex, multiple phenotypes may have evolved in response to male harassment. Such male harassment is generally considered to entail differential costs to female morphs, which may ultimately result in fitness differences. However, contrary to this prediction, most previous studies do not support that female morphs (andromorphs and heteromorphs) differ in measures of quality and (or) fitness components. In this study, we evaluate quality and fitness differences between mated female morphs of the damselfly Enallagma cyathigerum. We suggest that many earlier studies may have failed to observe morph differences in quality or fitness because selection by male harassment was weak. Here, we selected a study population for which our expectation was that levels of per female capita male harassment were high. Nevertheless, also in this population mated female morphs did not differ in body size or condition (body mass/body length). However, mated female morphs did differ in levels of developmental instability: heteromorphs consistently showed a higher level of fluctuating asymmetry than andromorphs. Also, mated female morphs differed in fecundity: andromorphs had a lower clutch size than heteromorphs. In addition, larger females contained more eggs, but the slope of this relationship was steeper in heteromorphs. In conclusion, mated female morphs of the damselfly E. cyathigerum at our study site clearly differed in one quality estimate (developmental instability) and in our measure of fitness (fecundity).

Behaviour ◽  
2000 ◽  
Vol 137 (9) ◽  
pp. 1211-1222 ◽  
Author(s):  
Rafael Márquez ◽  
Jaime Bosch

AbstractWe address whether fluctuating asymmetry (FA) in an external ear element is correlated with the accuracy of location of a sound source (synthetic male advertisement calls) by female midwife toads (Alytes obstetricans). Fluctuating asymmetry in the tympanum was measured in gravid females. We studied the relationship between FA, snout - vent - length (SVL), and precision in approaching an acoustic stimulus through playback tests. Female mass was negatively correlated with jump length. Tympanum FA was negatively correlated with the accuracy of location of a sound source. Thus, FA can play an important role in sexual selection by conferring an advantage in access to available males by females with low values of asymmetry.


1998 ◽  
Vol 11 (6) ◽  
pp. 735 ◽  
Author(s):  
W. U. Blanckenhorn ◽  
T. Reusch ◽  
C. Mühlhäuser

2021 ◽  
Vol 5 ◽  
pp. 27-35
Author(s):  
Wolf U. Blanckenhorn

Evidence for selective disadvantages of large body size remains scarce in general. Previous studies of the yellow dung fly Scathophaga stercoraria have demonstrated strong positive sexual and fecundity selection on male and female size. Nevertheless, the body size of flies from a Swiss study population has declined by ~10% 1993–2009. Given substantial heritability of body size, this negative evolutionary response of an evidently positively selected trait suggests important selective factors being missed. An episodic epidemic outbreak of the fungus Entomophthora scatophagae permitted assessment of natural selection exerted by this fatal parasite. Fungal infection varied over the season from ~50% in the cooler and more humid spring and autumn to almost 0% in summer. The probability of dying from fungal infection increased with adult fly body size. Females never laid any eggs after infection, so there was no fungus effect on female fecundity beyond its impact on mortality. Large males showed their typical mating advantage in the field, but this positive sexual selection was nullified by fungal infection. Mean fluctuating asymmetry of paired appendages (legs, wings) did not affect the viability, fecundity or mating success of yellow dung flies in the field. This study documents rare parasite-mediated disadvantages of large-sized flies in the field. Reduced ability to combat parasites such as Entomophthora may be an immunity cost of large body size in dung flies, although the hypothesized trade-off between fluctuating asymmetry, a presumed indicator of developmental instability and environmental stress, and immunocompetence was not found here.


Symmetry ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 9
Author(s):  
John H. Graham

Best practices in studies of developmental instability, as measured by fluctuating asymmetry, have developed over the past 60 years. Unfortunately, they are haphazardly applied in many of the papers submitted for review. Most often, research designs suffer from lack of randomization, inadequate replication, poor attention to size scaling, lack of attention to measurement error, and unrecognized mixtures of additive and multiplicative errors. Here, I summarize a set of best practices, especially in studies that examine the effects of environmental stress on fluctuating asymmetry.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1204
Author(s):  
John H. Graham

Phenotypic variation arises from genetic and environmental variation, as well as random aspects of development. The genetic (nature) and environmental (nurture) components of this variation have been appreciated since at least 1900. The random developmental component (noise) has taken longer for quantitative geneticists to appreciate. Here, I sketch the historical development of the concepts of random developmental noise and developmental instability, and its quantification via fluctuating asymmetry. The unsung pioneers in this story are Hugo DeVries (fluctuating variation, 1909), C. H. Danforth (random variation between monozygotic twins, 1919), and Sewall Wright (random developmental variation in piebald guinea pigs, 1920). The first pioneering study of fluctuating asymmetry, by Sumner and Huestis in 1921, is seldom mentioned, possibly because it failed to connect the observed random asymmetry with random developmental variation. This early work was then synthesized by Boris Astaurov in 1930 and Wilhelm Ludwig in 1932, and then popularized by Drosophila geneticists beginning with Kenneth Mather in 1953. Population phenogeneticists are still trying to understand the origins and behavior of random developmental variation. Some of the developmental noise represents true stochastic behavior of molecules and cells, while some represents deterministic chaos, nonlinear feedback, and symmetry breaking.


2019 ◽  
Vol 66 (4) ◽  
pp. 417-424
Author(s):  
Gregorio Moreno-Rueda ◽  
Abelardo Requena-Blanco ◽  
Francisco J Zamora-Camacho ◽  
Mar Comas ◽  
Guillem Pascual

Abstract Predation is one of the main selective forces in nature, frequently selecting potential prey for developing escape strategies. Escape ability is typically influenced by several morphological parameters, such as morphology of the locomotor appendices, muscular capacity, body mass, or fluctuating asymmetry, and may differ between sexes and age classes. In this study, we tested the relationship among these variables and jumping performance in 712 Iberian green frogs Pelophylax perezi from an urban population. The results suggest that the main determinant of jumping capacity was body size (explaining 48% of variance). Larger frogs jumped farther, but jumping performance reached an asymptote for the largest frogs. Once controlled by structural body size, the heaviest frogs jumped shorter distances, suggesting a trade-off between fat storage and jumping performance. Relative hind limb length also determined a small but significant percentage of variance (2.4%) in jumping performance—that is, the longer the hind limbs, the greater the jumping capacity. Juveniles had relatively shorter and less muscular hind limbs than adults (for a given body size), and their jumping performance was poorer. In our study population, the hind limbs of the frogs were very symmetrical, and we found no effect of fluctuating asymmetry on jumping performance. Therefore, our study provides evidence that jumping performance in frogs is not only affected by body size, but also by body mass and hind limb length, and differ between age classes.


2015 ◽  
Vol 93 (10) ◽  
pp. 735-740
Author(s):  
D.A. Croshaw ◽  
J.H.K. Pechmann

Understanding the phenotypic attributes that contribute to variance in mating and reproductive success is crucial in the study of evolution by sexual selection. In many animals, body size is an important trait because larger individuals enjoy greater fitness due to the ability to secure more mates and produce more offspring. Among males, this outcome is largely mediated by greater success in competition with rival males and (or) advantages in attractiveness to females. Here we tested the hypothesis that large male Marbled Salamanders (Ambystoma opacum (Gravenhorst, 1807)) mate with more females and produce more offspring than small males. In experimental breeding groups, we included males chosen specifically to represent a range of sizes. After gravid females mated and nested freely, we collected egg clutches and genotyped all adults and samples of hatchlings with highly variable microsatellite markers to assign paternity. Size had little effect on male mating and reproductive success. Breeding males were not bigger than nonbreeding males, mates of polyandrous females were not smaller than those of monogamous females, and there was no evidence for positive assortative mating by size. Although body size did not matter for male Marbled Salamanders, we documented considerable fitness variation and discuss alternative traits that could be undergoing sexual selection.


Sign in / Sign up

Export Citation Format

Share Document