Vertical and Radial Variation of Nuclear Elongation Index of Living Sapwood Ray Parenchyma Cells in a Plantation Tree of Cryptomeria Japonica

IAWA Journal ◽  
1994 ◽  
Vol 15 (3) ◽  
pp. 323-327 ◽  
Author(s):  
K.C. Yang ◽  
Y.S. Chen ◽  
C.A. Benson

Vertical and radial variations of nuclear elongation index (NEI) of living sapwood ray parenchyrna cells were studied in a 45-year-old plantation tree of Cryptomeria japonica D. Don collected in Taiwan on February 27, 1992. Nine wood strips oriented in an E-W direction of the tree were collected starting at 0.3 m above ground level, and progressing upwards by 2.5 m intervals to the tree crown. Radial sections, 20 µm thick, were cut from the cambium toward the inner sapwood of these nine wood strips. The nuclear elongation index (NEI) was used to express the metabolic activity of the ray cells. It was found that metabolic activity of sapwood ray parenchyma was thc highest at the outer sapwood and declined gradually towards the inner sapwood. The lowest average NEI was found at the lowest stern level. The average NEI of various stern height levels increased with increasing stern height level. The average NEI of three growth rings at the outer sapwood near the cambium reached a maximum at the bottom of the live crown.

IAWA Journal ◽  
1986 ◽  
Vol 7 (1) ◽  
pp. 17-20
Author(s):  
K.C. Yang

A more reliable indicator for expressing the metabolic activity of a living sapwood ray parenchyma cell is proposed and is compared with the old nuclear slenderness ratio (NSR) indicator. NSR is defined as the length of the nucleus divided by the width of the nucleus. The new indicator, the nuclear elongation index (NEI), is defined as the length of the nucleus divided by the length of the ray parenchyma cell multiplied by 100. The validity of the NEI and difference of the use of the NSR and NEI are compared and evaluated.


IAWA Journal ◽  
1987 ◽  
Vol 8 (2) ◽  
pp. 167-174 ◽  
Author(s):  
A.M. Babu ◽  
G.M. Nair ◽  
J.J. Shah

Traumatic gum-resin cavities develop in the secondary xylem of the stem of Ailanthus excelsa Roxb. in response to fungal infection and ethephon treatment. After infection or ethephon treatment, traumatic parenchyma in several cell layers develops instead of normal secondary xylem elements. It consists of unlignified axial and ray parenchyma cells. Vessels and fibres are absent. Gum-resin cavities in one or two tangential rows develop in this tissue by the lysis of its axial parenchyma cells. The cavities are bordered by an epithelium. A few layers of traumatic parenchyma cells adjacent to the epithelial cens become meristematic and appear cambiform. The epithelial cells undergo lysis and they evidently contribute to gum-resin formation. As the lysis of epithelial cens proceeds, the adjacent cambiform cens divide to form additional epithelial cells. The process continues for some time and eventually an the axial cells of the traumatic parenchyma break down forming a tangentially anastomosing network of cavities. The cavities do not traverse the ray cells, and the multiseriate rays remain intact like bridges amidst the ramifying cavities.


IAWA Journal ◽  
2013 ◽  
Vol 34 (3) ◽  
pp. 313-323 ◽  
Author(s):  
Gabriel U.C.A. Santos ◽  
Cátia H. Callado ◽  
Marcelo da Costa Souza ◽  
Cecilia G. Costa

Myrciaria, Neomitranthes, Plinia and Siphoneugena are closely related genera whose circumscriptions are controversial. The distinctions between Myrciaria vs. Plinia, and Neomitranthes vs. Siphoneugena, have been based on a few fruit characters. The wood anatomy of 24 species of these genera was examined to determine if wood anatomical features could help delimit the genera. It was determined the four genera cannot reliably be separated by wood anatomy alone. Characteristics seen in all four genera are: growth rings usually poorly-defined; diffuse porous; exclusively solitary vessels, usually circular to oval in outline; simple perforation plates; vessel-ray pits alternate and distinctly bordered; fibers with distinctly bordered pits in radial and tangential walls, usually very thickwalled; vasicentric tracheids typically absent; scanty paratracheal parenchyma, sometimes unilateral, and diffuse to diffuse-in-aggregates; chambered crystalliferous axial parenchyma in many species, usually both prismatic and smaller crystals; rays 1–4-seriate, uniseriate rays composed of upright/square cells, multiseriate rays with procumbent body cells and 1 to many marginal rows of upright/square cells; disjunctive ray parenchyma cells usually present.


IAWA Journal ◽  
2000 ◽  
Vol 21 (4) ◽  
pp. 389-401 ◽  
Author(s):  
Barbara L. Gartner ◽  
David C. Baker ◽  
Rachel Spicer

The factors that determine sapwood width and volume in a tree are not known. This study asked whether sapwood width is related to a need for stem storage sites. Experiments were conducted on 12 34-year-old Douglas-fir [(Pseudotsuga menziesii (Mirb.) Franco] trees with a 6-7 fold range of leaf areas and leaf area/sapwood volumes. Because of declining ray frequency but constant average ray area, ray volume declined for the first 6-10 growth rings, then remained constant, and did not vary with height (breast height vs. 10 nodes from the top). Fewer of the ray parenchyma cells had nuclei in inner than outer sapwood. Inner sapwood had ray parenchyma with smaller rounder nuclei than did outer sapwood, and there was no effect of height. There was a positive relationship between leaf area and the relative volume of ray in outer sapwood at breast height (r = 0.646, p = 0.02), supporting the hypothesis that Douglas-fir trees with larger leaf areas have higher ray volume than do trees with smaller leaf areas. However, correlations of leaf area I sapwood volume with leaf area at either height were not significant, nor were correlations of either leaf area or leaf area/sapwood volume with measures of ray vitality (nuclear frequency in outer sapwood, or the ratio of nuclear frequency in the middle I outer sapwood or in inner I outer sapwood). These latter correlations give no evidence that Douglas-fir trees determine their sapwood volume based on a need for quantity of vital xylem rays.


Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 251
Author(s):  
Katsushi Kuroda ◽  
Kenichi Yamane ◽  
Yuko Itoh

Although the radial movement of minerals in tree trunks is a widely accepted phenomenon, experimental evidence of their movement in standing trees and underlying mechanisms is very limited. Previously, we clarified that cesium (Cs) artificially injected into the outer part of the sapwood of standing Japanese cedar (Cryptomeria japonica D. Don) trunks moved to the inner part of the sapwood, including the intermediate wood, via active transport by xylem parenchyma cells and diffusion through cell walls and then moved into the heartwood by diffusion. To understand the mechanism underlying the radial movement of minerals in the standing tree trunk, it is necessary to clarify their movement in the opposite direction. Therefore, the present study aimed to determine the radial movement of minerals from inside to outside in the trunks of standing trees at the cellular level. For this, a long hole across the center part of the trunk, which reached the heartwood, intermediate wood, and sapwood, was made in standing Japanese cedar trunks, and a solution of stable isotope Cs was continuously injected into the hole for several days as a tracer. The injected part of the trunk was collected after being freeze-fixed with liquid nitrogen, and the frozen sample was subjected to analysis of Cs distribution at the cellular level using cryo-scanning electron microscopy/energy-dispersive X-ray spectroscopy. The Cs injected into the inner sapwood or intermediate wood rapidly moved toward the outer sapwood via xylem ray parenchyma cells together with diffusion through the cell walls. In contrast, the Cs injected into the heartwood barely moved to the sapwood, although it reached a part of the inner intermediate wood. These results suggest that minerals in xylem ray parenchyma cells in the sapwood are bidirectionally supplied to each other; however, the minerals accumulated in the heartwood may not be supplied to living cells.


Trees ◽  
2016 ◽  
Vol 31 (1) ◽  
pp. 27-39 ◽  
Author(s):  
Satoshi Nakaba ◽  
Hikaru Morimoto ◽  
Izumi Arakawa ◽  
Yusuke Yamagishi ◽  
Ryogo Nakada ◽  
...  

Forests ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 977 ◽  
Author(s):  
Mirela Tulik ◽  
Joanna Jura-Morawiec ◽  
Anna Bieniasz ◽  
Katarzyna Marciszewska

This paper deals with the spatial distribution of heartwood in Scots pine stems (Pinus sylvestris L.), determined on the basis of the absence of nuclei in parenchyma cells. Samples were collected at several heights from two Scots pine stems growing in fresh coniferous stand as codominant trees. Transverse and radial sections were cut from the samples and stained with acetocarmine to detect the nuclei and with I2KI to show starch grains. Unstained sections were also observed under ultraviolet (UV) light to reveal cell wall lignification. The shapes of the nuclei in ray and axial parenchyma cells differed: the axial parenchyma cells had rounded nuclei, while the nuclei of the ray parenchyma cells were elongated. The lifespan of the parenchyma cells was found to be 16–42 years; the longest-lived were cells from the base of the stem, and the shortest-lived were from the base of the crown. The largest number of growth rings comprising heartwood was observed at a height of 1.3–3.3 m, which signifies that the distribution of heartwood within the stem is uneven. Moreover, the distance of the cells from the apical meristem and the cambium was seen to have an effect on the presence of living parenchyma cells, i.e., those with stained nuclei.


IAWA Journal ◽  
1989 ◽  
Vol 10 (4) ◽  
pp. 384-394 ◽  
Author(s):  
Katsuji Yamanaka

Anatomical changes in traumatic phloem resin canal formation induced in Chamaecyparis obtusa S. ' Z. were examined periodically after mechanical wounding. Five to seven days after wounding, the parenchyma cells close or closest to the cambium at the time of injury expand radially, and then between the seventh to the ninth day, the expanding parenchyma cells developed into tangential rows. Some of the cells simultaneously divided periclinally within nine to fifteen days after being wounded. Moreover, derivatives schizogenously separated from each other and continued to divide. The spaces were enlarged by tangential and radial division of parenchyma cells. The axial and ray parenchyma cells divided mainly periclinally and also anticlinally to form canals, and eventually, circular or elliptic resin canals c. 100 to 200 µm in diameter in regular tangential rows, separated by ray cells. Traumatic phloem resin canals form a tangentially anastomosing network.


2014 ◽  
Vol 59 (1) ◽  
pp. 55-61 ◽  
Author(s):  
Kishore S. Rajput ◽  
Bharat D. Chaudhary ◽  
Vidya S. Patil

Abstract Stems of Ipomoea obscura Ker Gawl., increase in thickness by forming multiple rings of cambia. Stems 5-6 mm thick produce parenchymatous derivatives which divide repeatedly to form small arcs of cambium. Several such small arcs initiate simultaneously and form a ring of small cambial arcs. After the formation of a few xylem and phloem elements, all these arcs are interconnected by transdifferentiation of parenchyma cells present between the cambial arcs and constitute a complete cambial cylinder. This newly formed cambium is functionally bidirectional: earlier- formed arcs produce xylem centripetally and phloem centrifugally, while later-formed segments exclusively produce thin-walled parenchyma cells on either side. Young stems are circular in cross section but as stem thickness increases they become oval to elliptic or lobed and dumbbell-shaped. Xylem rays are mostly uni- or biseriate and thin-walled, but multiseriate rays characteristic for a climbing habit are observed occasionally. In thick stems, the marginal ray parenchyma in most of the samples becomes meristematic and develops ray cambia which exclusively produce sieve elements. Similarly, parenchyma cells produced from later-formed cambial segments give rise to several irregularly oriented vascular bundles. The secondary xylem is diffuse porous, with indistinct growth rings and is composed of fibriform and wider vessels, fibres, and axial and ray parenchyma cells, while phloem consists of sieve elements, companion cells, and axial and ray parenchyma cells.


Sign in / Sign up

Export Citation Format

Share Document