scholarly journals How Long Do Wood Parenchyma Cells Live in the Stem of a Scots Pine (Pinus sylvestris L.)? Studies on Cell Nuclei Status along the Radial and Longitudinal Stem Axes

Forests ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 977 ◽  
Author(s):  
Mirela Tulik ◽  
Joanna Jura-Morawiec ◽  
Anna Bieniasz ◽  
Katarzyna Marciszewska

This paper deals with the spatial distribution of heartwood in Scots pine stems (Pinus sylvestris L.), determined on the basis of the absence of nuclei in parenchyma cells. Samples were collected at several heights from two Scots pine stems growing in fresh coniferous stand as codominant trees. Transverse and radial sections were cut from the samples and stained with acetocarmine to detect the nuclei and with I2KI to show starch grains. Unstained sections were also observed under ultraviolet (UV) light to reveal cell wall lignification. The shapes of the nuclei in ray and axial parenchyma cells differed: the axial parenchyma cells had rounded nuclei, while the nuclei of the ray parenchyma cells were elongated. The lifespan of the parenchyma cells was found to be 16–42 years; the longest-lived were cells from the base of the stem, and the shortest-lived were from the base of the crown. The largest number of growth rings comprising heartwood was observed at a height of 1.3–3.3 m, which signifies that the distribution of heartwood within the stem is uneven. Moreover, the distance of the cells from the apical meristem and the cambium was seen to have an effect on the presence of living parenchyma cells, i.e., those with stained nuclei.

IAWA Journal ◽  
2014 ◽  
Vol 35 (4) ◽  
pp. 407-429 ◽  
Author(s):  
Jong Sik Kim ◽  
Geoffrey Daniel

Microdistribution of non-cellulosic polysaccharides in pit membranes of bordered pits (intertracheid pits between adjacent tracheids), cross-field pits (half bordered pits between tracheids and ray parenchyma cells) and ray pits (simple pits in nodular end walls of ray parenchyma cells) was investigated in mature earlywood of juvenile Scots pine and Norway spruce seedlings using immunocytochemistry combined with monoclonal antibodies specific to (1→4)-β-galactan (LM5), (1→5)-α-arabinan (LM6), homogalacturonan (HG, LM19, LM20), xyloglucan (LM15), xylan (LM10, LM11) and mannan (LM21, LM22) epitopes. Using phloroglucinol-HCl and KMnO4 staining, lignin distribution in pit membranes was also examined. Apart from cross-field pit membranes in Scots pine, all pit membranes observed showed a positive reaction for lignin with differences in staining intensity. Ray pit membranes showed strongest reaction with lignin staining in both species. Intensity of lignin staining in bordered pit membranes was stronger in Norway spruce than in Scots pine. With localization of non-cellulosic polysaccharide epitopes, Scots pine showed differences in cross-field pit membranes (rhamnogalacturonan-I (RG-I), HG and xyloglucan epitopes) from bordered and ray pit membranes (RG-I and HG epitopes). In contrast, Norway spruce showed significant differences in ray pit membranes (RG-I, HG, xyloglucan, xylan and mannan epitopes) from bordered and cross-field pit membranes (HG and no/trace amount of RG-I epitopes). Distributional differences in HG epitopes depending on antibody type/ membrane regions were also observed in cross-field pit membranes between the two species. Together, the results suggest that distribution patterns of lignin and non-cellulosic polysaccharides in pit membranes differ significantly between pit types and between Scots pine and Norway spruce. Compared with the same types of pit membranes in hardwoods, the results for Scots pine and Norway spruce (softwoods) differed significantly.


IAWA Journal ◽  
2013 ◽  
Vol 34 (3) ◽  
pp. 313-323 ◽  
Author(s):  
Gabriel U.C.A. Santos ◽  
Cátia H. Callado ◽  
Marcelo da Costa Souza ◽  
Cecilia G. Costa

Myrciaria, Neomitranthes, Plinia and Siphoneugena are closely related genera whose circumscriptions are controversial. The distinctions between Myrciaria vs. Plinia, and Neomitranthes vs. Siphoneugena, have been based on a few fruit characters. The wood anatomy of 24 species of these genera was examined to determine if wood anatomical features could help delimit the genera. It was determined the four genera cannot reliably be separated by wood anatomy alone. Characteristics seen in all four genera are: growth rings usually poorly-defined; diffuse porous; exclusively solitary vessels, usually circular to oval in outline; simple perforation plates; vessel-ray pits alternate and distinctly bordered; fibers with distinctly bordered pits in radial and tangential walls, usually very thickwalled; vasicentric tracheids typically absent; scanty paratracheal parenchyma, sometimes unilateral, and diffuse to diffuse-in-aggregates; chambered crystalliferous axial parenchyma in many species, usually both prismatic and smaller crystals; rays 1–4-seriate, uniseriate rays composed of upright/square cells, multiseriate rays with procumbent body cells and 1 to many marginal rows of upright/square cells; disjunctive ray parenchyma cells usually present.


IAWA Journal ◽  
1994 ◽  
Vol 15 (3) ◽  
pp. 323-327 ◽  
Author(s):  
K.C. Yang ◽  
Y.S. Chen ◽  
C.A. Benson

Vertical and radial variations of nuclear elongation index (NEI) of living sapwood ray parenchyrna cells were studied in a 45-year-old plantation tree of Cryptomeria japonica D. Don collected in Taiwan on February 27, 1992. Nine wood strips oriented in an E-W direction of the tree were collected starting at 0.3 m above ground level, and progressing upwards by 2.5 m intervals to the tree crown. Radial sections, 20 µm thick, were cut from the cambium toward the inner sapwood of these nine wood strips. The nuclear elongation index (NEI) was used to express the metabolic activity of the ray cells. It was found that metabolic activity of sapwood ray parenchyma was thc highest at the outer sapwood and declined gradually towards the inner sapwood. The lowest average NEI was found at the lowest stern level. The average NEI of various stern height levels increased with increasing stern height level. The average NEI of three growth rings at the outer sapwood near the cambium reached a maximum at the bottom of the live crown.


IAWA Journal ◽  
2000 ◽  
Vol 21 (4) ◽  
pp. 389-401 ◽  
Author(s):  
Barbara L. Gartner ◽  
David C. Baker ◽  
Rachel Spicer

The factors that determine sapwood width and volume in a tree are not known. This study asked whether sapwood width is related to a need for stem storage sites. Experiments were conducted on 12 34-year-old Douglas-fir [(Pseudotsuga menziesii (Mirb.) Franco] trees with a 6-7 fold range of leaf areas and leaf area/sapwood volumes. Because of declining ray frequency but constant average ray area, ray volume declined for the first 6-10 growth rings, then remained constant, and did not vary with height (breast height vs. 10 nodes from the top). Fewer of the ray parenchyma cells had nuclei in inner than outer sapwood. Inner sapwood had ray parenchyma with smaller rounder nuclei than did outer sapwood, and there was no effect of height. There was a positive relationship between leaf area and the relative volume of ray in outer sapwood at breast height (r = 0.646, p = 0.02), supporting the hypothesis that Douglas-fir trees with larger leaf areas have higher ray volume than do trees with smaller leaf areas. However, correlations of leaf area I sapwood volume with leaf area at either height were not significant, nor were correlations of either leaf area or leaf area/sapwood volume with measures of ray vitality (nuclear frequency in outer sapwood, or the ratio of nuclear frequency in the middle I outer sapwood or in inner I outer sapwood). These latter correlations give no evidence that Douglas-fir trees determine their sapwood volume based on a need for quantity of vital xylem rays.


IAWA Journal ◽  
2009 ◽  
Vol 30 (1) ◽  
pp. 37-48 ◽  
Author(s):  
Chunhua Zhang ◽  
Hisashi Abe ◽  
Yuzou Sano ◽  
Takeshi Fujiwara ◽  
Minoru Fujita ◽  
...  

The cellular distribution of heartwood substances and the structure of the pathways for their diffusion were studied in Acacia mangium Willd. Apart from ray parenchyma cells, axial parenchyma cells also are involved in the formation of heartwood substances. Heartwood substances were unevenly distributed in the heartwood. A closer inspection of interfibre pit pairs revealed that, although many pit membranes were completely covered with encrusting materials, some pit pairs had many small openings on their pit membranes. The openings possibly function as intercellular diffusion pathways for heartwood substances. The sizes of the pits varied considerably, ranging from 0.4 to 2.3 μm in diameter. These structural variations in the interfiber pits might be one of the factors contributing to the uneven distribution of the heartwood substances. A large number of blind pits were present in the ray parenchyma cells and faced the intercellular spaces, into which heartwood substances from the ray parenchyma cells were released via these blind pits. Resin-cast replicas demonstrated that the intercellular spaces and the blind pits formed a three-dimensional network that is considered to serve as an extracellular diffusion pathway for heartwood substances.


IAWA Journal ◽  
2021 ◽  
pp. 1-9
Author(s):  
Katrin Zimmer ◽  
Andreas Treu

Abstract Scots pine exhibits variations in ray anatomy, which are poorly understood. Some ray parenchyma cells develop thick and lignified cell walls before heartwood formation. We hypothesized that some stands and trees show high numbers of lignified and thick-walled parenchyma cells early in the sapwood. Therefore, a microscopic analysis of Scots pine sapwood from four different stands in Northern Europe was performed on Safranin — Astra blue-stained tangential micro sections from outer and inner sapwood areas. Significant differences in lignification and cell wall thickening of ray parenchyma cells were observed in the outer sapwood between all of the stands for the trees analyzed. On a single tree level, the relative lignification and cell wall thickening of ray parenchyma cells ranged from 4.3% to 74.3% in the outer sapwood. In the inner sapwood, lignification and cell wall thickening of ray parenchyma cells were more frequent. In some trees, however, the difference in lignification and cell wall thickening between inner and outer sapwood was small since early lignification, and cell wall thickening was already more common in the outer sapwood. Ray composition and number of rays per area were not significantly different within the studied material. However, only one Scottish tree had a significantly higher number of ray parenchyma cells per ray. The differences discovered in lignification and cell wall thickening in ray parenchyma cells early in the sapwood of Scots pine are relevant for wood utilization in general and impregnation treatments with protection agents in particular.


2014 ◽  
Vol 64 (3) ◽  
pp. 233-238 ◽  
Author(s):  
Beata Niewęgłowska-Guzik

In areas intensely contaminated with sulphur compounds some pine trees (<i>Pinus sylvestris</i> L.) have deformed branches with numerous short sprouts. In the branches lenticular areas with considerably changed xylem elements are found. In these greatly changed xylem areas (GCXAs) deformed tracheids are almost isodiametric, some form hooks and loops. The tracheids and ray parenchyma cells show a differentiated level of cell walls lignification. A significantly larger number of rays and the so-called pseudorings are observed.


2014 ◽  
Vol 59 (1) ◽  
pp. 55-61 ◽  
Author(s):  
Kishore S. Rajput ◽  
Bharat D. Chaudhary ◽  
Vidya S. Patil

Abstract Stems of Ipomoea obscura Ker Gawl., increase in thickness by forming multiple rings of cambia. Stems 5-6 mm thick produce parenchymatous derivatives which divide repeatedly to form small arcs of cambium. Several such small arcs initiate simultaneously and form a ring of small cambial arcs. After the formation of a few xylem and phloem elements, all these arcs are interconnected by transdifferentiation of parenchyma cells present between the cambial arcs and constitute a complete cambial cylinder. This newly formed cambium is functionally bidirectional: earlier- formed arcs produce xylem centripetally and phloem centrifugally, while later-formed segments exclusively produce thin-walled parenchyma cells on either side. Young stems are circular in cross section but as stem thickness increases they become oval to elliptic or lobed and dumbbell-shaped. Xylem rays are mostly uni- or biseriate and thin-walled, but multiseriate rays characteristic for a climbing habit are observed occasionally. In thick stems, the marginal ray parenchyma in most of the samples becomes meristematic and develops ray cambia which exclusively produce sieve elements. Similarly, parenchyma cells produced from later-formed cambial segments give rise to several irregularly oriented vascular bundles. The secondary xylem is diffuse porous, with indistinct growth rings and is composed of fibriform and wider vessels, fibres, and axial and ray parenchyma cells, while phloem consists of sieve elements, companion cells, and axial and ray parenchyma cells.


IAWA Journal ◽  
2009 ◽  
Vol 30 (3) ◽  
pp. 231-245 ◽  
Author(s):  
Luis García Esteban ◽  
Paloma de Palacios ◽  
Francisco García Fernández ◽  
Ruth Moreno

The literature on the wood anatomy of the genus Abies is reviewed and discussed, and complemented with a detailed study of 33 species, 1 subspecies and 4 varieties. In general, the species studied do not show diagnostic interspecific differences, although it is possible to establish differences between groups of species using certain quantitative and qualitative features.The marginal axial parenchyma consisting of single cells and the ray parenchyma cells with distinctly pitted horizontal walls, nodular end walls and presence of indentures are constant for the genus, although these features also occur in the other genera of the Abietoideae. The absence of ray tracheids in Abies can be used to distinguish it from Cedrus and Tsuga, and the irregularly shaped parenchymatous marginal ray cells are only shared with Cedrus. The absence of resin canals enables Abies to be distinguished from very closely related genera such as Keteleeria and Nothotsuga. The crystals in the ray cells, taxodioid cross-field pitting and the warty layer in the tracheids can be regarded as diagnostic generic features.


Forests ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1706
Author(s):  
Luis García Esteban ◽  
Paloma de Palacios ◽  
Alberto García-Iruela ◽  
Francisco García-Fernández ◽  
Lydia García-Esteban ◽  
...  

The wood anatomy of 132 species of the genera Abies, Cathaya, Cedrus, Keteleeria, Larix, Nothotsuga, Picea, Pinus, Pseudolarix, Pseudotsuga and Tsuga was studied to determine the elements that characterise the xylem of each genus and discuss possible groupings by wood anatomy for comparison with clades established by molecular phylogeny. The presence of resin canals and ray tracheids supports the family Pinaceae, although the absence of ray tracheids in Keteleeria and their occasional presence in Abies and Pseudolarix weakens it. Based on wood structure, Pinaceae clearly supports division into two groups, coinciding with molecular phylogeny: Pinoideae (Cathaya-Larix-Picea-Pinus-Pseudotsuga) and Abietoideae (Abies-Cedrus-Keteleeria-Nothotsuga-Pseudolarix-Tsuga). Although differences between genera are slight in Pinoideae, the Abietoideae group presents problems such as the presence of only axial resin canals in Keteleeria and Nothotsuga, absence of ray tracheids in Keteleeria and presence of traumatic radial resin canals in Cedrus. However, other features such as pitted horizontal walls and nodular end walls of ray parenchyma cells, indentures, scarce marginal axial parenchyma and presence of crystals in ray parenchyma strengthen the Abietoideae group.


Sign in / Sign up

Export Citation Format

Share Document