A Comparison of the Ecological Wood Anatomy of the Floras of Southern California and Israel

IAWA Journal ◽  
1985 ◽  
Vol 6 (4) ◽  
pp. 349-353 ◽  
Author(s):  
Pieter Baas ◽  
Sherwin Carlquist

A comparison is made between ecological trends in wood anatomy found in southern California and Israel and adjacent regions. Trends for type of vessel perforation, vessel member length and the occurrence of helical thickenings show striking parallels. Characters like vessel diameter and frequency and incidence of (fibre-)tracheids show only weakly similar trends. Vessel grouping and ring-porosity do not show any parallel in the data for southern California and Israel. The differences between the two floras can largely be attributed to different floristic composition and the alternative possibilities for safe and efficient xylem sap transport and drought resistance in different taxa.

Forests ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1147
Author(s):  
Paloma de Palacios ◽  
Luis G. Esteban ◽  
Peter Gasson ◽  
Francisco García-Fernández ◽  
Antonio de Marco ◽  
...  

Wood anatomy is a key discipline as a tool for monitoring the global timber trade, particularly for wood listed in protected species conventions such as Convention on International Trade in Endangered Species of Wild Flora and Fauna (CITES). One of the main barriers to reducing illegal trafficking of protected species is ensuring that customs officials with appropriate training in wood anatomy are equipped with simple tools, at both the origin and destination of shipments, so they can raise an early warning about wood suspected of contravening international treaties and immediately send samples to a specialised laboratory. This work explains how lenses attached to a smartphone, capable of achieving up to 400× magnification using the phone digital zoom, can be used to distinguish features that are not visible with traditional 10× or 12× lenses, enhancing the capacity to view features not typically observable in the field. In softwoods, for example, this method permits determination of the type of axial parenchyma arrangement, whether there are helical thickenings in axial tracheids and whether axial tracheids have organic deposits or contain alternate polygonal pits, and in the rays, if the tracheids are smooth-walled or dentate and if the cross-field pits are window-like. In hardwoods, it allows verification of the presence of tyloses and deposits in vessels, the type of perforation plates and whether the intervascular pitting is scalariform; in the rays it is possible to differentiate the types of ray cells; and in the axial parenchyma, to determine the presence of oil cells. In addition, unlike macroscopic analysis with a conventional magnifying lens, this type of lens can be used with the appropriate mobile application for the biometry of important elements such as ray height and vessel diameter.


2017 ◽  
pp. 53
Author(s):  
Jacqueline Ceja-Romero ◽  
Carmen de la Paz Pérez-Olvera ◽  
Jesús Rivera-Tapia

The wood anatomy of Salvia pubescens, S. regla, and S. sessei is described. These species are included within the section Erythrostachys, subgenus Calosphace, genus Salvia. Two samples were collected for each species to obtain permanent slides. Transverse, radial and tangential sections were used to describe the anatomy of each taxon. The wood has ring porosity, the tangential vessel diameter is small (34-85 μm), the vessel elements are short (94-257 μm) with alternate pitting, helical thickenings and simple perforation plates. Vasicentric tracheids are present. Axial parenchyma is paratracheal scanty, apotracheal diffuse, and marginal. Rays are uniseriate and multiseriate, heterogeneous, aggregate and non aggregate. Libriform fibers are septate and non septate. Gums, tyloses, starch grains and prismatic crystals were observed. These features agree with previous reports for the genus.


IAWA Journal ◽  
1993 ◽  
Vol 14 (1) ◽  
pp. 77-86 ◽  
Author(s):  
Juliet Prior ◽  
Peter Gasson

Charcoal often retains sufficient qualitative anatomical features for the family and genus of the wood to be identified. During the charring process however, considerable and sometimes unexpected changes in quantitative characters occur, which are of particular importance to species identification and ecological wood anatomy. Comparative measurements were made using charred and uncharred trunkwood from six common southern African savanna trees. SampIes were charred for 30 minutes at either 400 or 700°C. Charcoal yield and significant quantitative changes in vessel diameter and ray cells are related both to wood anatomy and to the process of combustion. Differences observed on charring were most closely correlated with the nature and quantity of the fibres. Axial parenchyma cells expanded after charring at both temperatures.


Rodriguésia ◽  
2014 ◽  
Vol 65 (3) ◽  
pp. 567-576 ◽  
Author(s):  
Carmen Regina Marcati ◽  
Leandro Roberto Longo ◽  
Alex Wiedenhoeft ◽  
Claudia Franca Barros

Root and stem wood anatomy of C. myrianthum (Verbenaceae) from a semideciduous seasonal forest in Botucatu municipality (22º52’20”S and 48º26’37”W), São Paulo state, Brazil, were studied. Growth increments demarcated by semi-ring porosity and marginal bands of axial parenchyma were observed in the wood of both root and stem. Many qualitative features were the same in both root and stem: fine helical thickenings, and simple and multiple perforation plates in vessel elements; large quantities of axial parenchyma in the growth rings, grading from marginal bands and confluent forming irregular bands in earlywood to lozenge aliform in latewood; axial parenchyma cells forked, and varied wall projections and undulations; septate fibres; forked and diverse fibre endings. Quantitative features differing between root and stem wood were evaluated using student’s t-test, and vessel frequency, vessel element length, vessel diameter, ray height, and vulnerability and mesomorphy indices differed significantly. Root wood had lower frequency of vessels, narrower and longer vessel elements, and taller rays than wood of the stem. The calculated vulnerability and mesomorphy indices indicated that C. myrianthum plants are mesomorphic. Roots seem to be more susceptible to water stress than the stem.


1970 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohan P. Devkota ◽  
Gerhard Glatzel

Effects of infection by the mistletoe Scurrula elata (Edgew.) Danser, on wood properties of its common host Rhododendron arboreum Sm., were studied in the Annapurna Conservation Area of Central Nepal Himalaya. Heavy infection by mistletoes invariably causes decline of the host. Infested branches show inhibition of growth, defoliation and eventual death of branch parts distal to the site of infection. Anatomical properties of wood were compared in samples of branches proximal to the infection and in uninfected branches. The hypothesis that infection induces changes in basic wood anatomy could not be proven. Vessel density, vessel area, percentage lumen area and mean vessel diameter of the wood of infested and uninfected branches did not show any significant differences. The studied anatomical parameters were not correlated to the diameter of the host branch. These results show that infection by S. elata did not cause any changes in basic wood anatomy of its host R. arboreum. It appears that the studied anatomical parameters of Rhododendron wood are fairly stable and are not changed by stress due to infection by mistletoes. The damage to the host distal to the infected area most likely results from an insufficiency of total conductive area to supply both mistletoe and host. Unfortunately we could not determine annual conductive area increment, because R arboreum does not develop usable annual tree rings in the climate of the study area. Key words: Himalayas, mistletoe. Rhododendron arboreum, Scurrula elata, water stress, wood anatomy. Ecoprint Vol.11(1) 2004.


IAWA Journal ◽  
1985 ◽  
Vol 6 (4) ◽  
pp. 281-282 ◽  
Author(s):  
Pieter Baas ◽  
Regis B. Miller

IAWA Journal ◽  
2015 ◽  
Vol 36 (2) ◽  
pp. 138-151 ◽  
Author(s):  
Luíza Teixeira-Costa ◽  
Gregório Ceccantini

Parasitic plants are capable of causing a variety of effects to their hosts, including alterations in the process of wood formation. However, the majority of studies dealing with parasitic plant anatomy have focused on the host–parasite interface and the direct action of the haustorium, which is the organ responsible for attaching the parasite to the host. Considering this gap, we studied the anatomical and functional effects caused by a mistletoe species, Phoradendron crassifolium (Santalaceae), on the wood anatomy of the host tree Tapirira guianensis (Anacardiaceae). Both parasitized and non-parasitized branches were collected from host trees. Traditional wood anatomy procedures were employed, along with functionality experiments using the ascent of safranin solution through the xylem. Prior to the analysis, all sampled branches were divided in “upstream” and “downstream” portions, considering the direction of xylem sap flow inside the plant body. This design was chosen in order to avoid biased results derived from normal ontogeny-related wood anatomical and functional changes. Our results showed that infested wood expressed a higher density of embolized vessels, narrower vessel lumen diameter, higher vessel density, taller and wider rays, and fibers with thinner cell walls. All these responses were most conspicuous in the downstream sections of the parasitized branches. We propose that the wood anatomical and functional alterations were induced by the combination of water stress caused by water use by the parasite and consequent low turgor in differentiating cambial derivates; by unbalanced auxin/cytokinin concentrations originating at the infestation region due to phloem disruptions caused by the parasite’s penetration and action; and by higher than usual ethylene levels. Further analysis of hydraulic conductivity and hormonal changes in host branches are necessary to test this hypothesis.


IAWA Journal ◽  
2015 ◽  
Vol 36 (1) ◽  
pp. 22-35 ◽  
Author(s):  
Luis G. Esteban ◽  
Paloma de Palacios ◽  
Alberto García-Iruela ◽  
Elena Román-Jordán ◽  
Francisco G. Fernández ◽  
...  

For the first time, the wood anatomy of Tetraclinis articulata (Vahl) Masters has been studied using representative samples from its natural distribution area in Spain, in Sierra de Cartagena (Region of Murcia). Mature wood was collected from five individuals representative of the forest stand and their anatomy was compared with other genera of the Cupressaceae. Axial tracheids without helical thickenings, low homogeneous rays, cupressoid pits and the absence of normal axial resin canals are characteristic features of this monotypic genus, as they are of most other Cupressaceae genera. An obvious warty layer separates this wood from the genera sharing its territory (Cupressus and Juniperus) and its semi-spherical, slightly anastomosed warts distinguish it from other, geographically distant genera (Actinostrobus and Callitris). The presence of traumatic axial resin canals is reported for the first time and supports the occurrence of this feature outside the Pinaceae. The wood anatomical diversity within the clade comprising Tetraclinis, Microbiota and Platycladus, as reconstructed by molecular analysis, is discussed.


Sign in / Sign up

Export Citation Format

Share Document