Anatomical Characteristics of the Anterior Talofibular Ligament in Ankle Joint of Korean Population

2019 ◽  
Vol 32 (4) ◽  
pp. 159
Author(s):  
Hyung Wook Kwon ◽  
Jeonghyun Park ◽  
Digud Kim ◽  
Kwang Rak Park ◽  
Mi Jung Lee ◽  
...  
2020 ◽  
Vol 33 (3) ◽  
pp. 117
Author(s):  
Hyungwook Kwon ◽  
Jaeho Cho ◽  
Digud Kim ◽  
Kwangrak Park ◽  
Mijung Lee ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Tomomi Yamazaki ◽  
Sae Maruyama ◽  
Yuki Sato ◽  
Yukako Suzuki ◽  
Sohei Shimizu ◽  
...  

Abstract Background The purpose of the present study was to examine the relationship between ankle joint laxity and general joint laxity (GJL) in relation to the menstrual cycle, which was divided into four phases based on basal body temperature and ovulation, assessed using an ovulation kit. Methods Participants were 14 female college students (21–22 years) with normal menstrual cycles (cis gender). Anterior drawer stress to a magnitude of 120 N was applied for all participants. Anterior talofibular ligament (ATFL) length was measured as the linear distance (mm) between its points of attachment on the lateral malleolus and talus using ultrasonography. Data on ATFL length from each subject were used to calculate each subject’s normalized length change with anterior drawer stress (AD%). The University of Tokyo method was used for evaluation of GJL. AD% and GJL were measured once in each menstrual phase. Results There was no statistically significant difference between AD% in each phase. GJL score was significantly higher in the ovulation and luteal phases compared with the early follicular phase. AD% and GJL showed a positive correlation with each other in the ovulation phase. Conclusions Although it is unclear whether estrogen receptors are present in the ATFL, the present study suggests that women with high GJL scores might be more sensitive to the effects of estrogen, resulting in ATFL length change in the ovulation phase.


2020 ◽  
Vol 24 (4) ◽  
pp. 266-271
Author(s):  
N. Yu. Serova ◽  
T. A. Akhadov ◽  
I. A. Melnikov ◽  
O. V. Bozhko ◽  
N. A. Semenova ◽  
...  

Introduction. Sprain of the ankle joint is one of the most common injuries in children during sport activities. Purpose. To define MRI diagnostic value in ankle joint injuries. Material and methods. 30 patients , 18 boys and 12 girls aged 8-17 ( average age 14.6 years), were enrolled into the study. 20 of them (66.7%) were 12-14 years old, 3 (10%) - < 10 years old and 7 (23.3 %) - > 14 years old. A Philips AchievadStream 3.0 Tesla scanner was used for MRI examination. Results. MRI findings showed that 17 (56.7%) patients had damage of the anterior talofibular ligament; 8 patients had avulsion of bone fragments of the lateral ankle; 9 patients (30.0%) had partial deltoid ligament injuries. Complete rupture of ligaments was rare and was seen only in two patients (6.7%). Conclusion. MRI is a method of choice in assessing ankle injuries due to high contrast of soft tissues, high resolution and multi-planar potentials. MRI is especially useful in examining soft ankle tissue structures such as tendons, ligaments, nerves and fascia, as well as in revealing hidden / subtle bone damage.


Author(s):  
G Marta ◽  
C Quental ◽  
J Folgado ◽  
F Guerra-Pinto

Lateral ankle instability, resulting from the inability of ankle ligaments to heal after injury, is believed to cause a change in the articular contact mechanics that may promote cartilage degeneration. Considering that lateral ligaments’ insufficiency has been related to rotational instability of the talus, and that few studies have addressed the contact mechanics under this condition, the aim of this work was to evaluate if a purely rotational ankle instability could cause non-physiological changes in contact pressures in the ankle joint cartilages using the finite element method. A finite element model of a healthy ankle joint, including bones, cartilages and nine ligaments, was developed. Pure internal talus rotations of 3.67°, 9.6° and 13.43°, measured experimentally for three ligamentous configurations, were applied. The ligamentous configurations consisted in a healthy condition, an injured condition in which the anterior talofibular ligament was cut, and an injured condition in which the anterior talofibular and calcaneofibular ligaments were cut. For all simulations, the contact areas and maximum contact pressures were evaluated for each cartilage. The results showed not only an increase of the maximum contact pressures in the ankle cartilages, but also novel contact regions at the anteromedial and posterolateral sections of the talar cartilage with increasing internal rotation. The anteromedial and posterolateral contact regions observed due to pathological internal rotations of the talus are a computational evidence that supports the link between a pure rotational instability and the pattern of pathological cartilaginous load seen in patients with long-term lateral chronic ankle instability.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Wenbo Zhang

This study was to analyze the sport-induced ankle joint injury (AJI) images based on the neural network algorithms using the magnetic resonance imaging (MRI). 20 patients and 20 volunteers were included in the experimental and control groups, respectively. The hybrid diffusion equation (HDE) neural network (HDENN) algorithm was compared with the fully convolutional neural network (FCNN) and the FCNN preprocessing, and the HDE was applied to the MRI analysis of sport-induced AJI. The results showed that the total score of MRI image for the conventional position of the anterior talofibular ligament (ATFL) and posterior talofibular ligament (PTFL) was concentrated in 4 (55%) and 5 (65%), respectively. The number of patients with good prognosis with grade II injury (11 cases) was much higher than that of grade III injury (2 cases), and the number of patients with poor prognosis (4 cases) was lower than that of grade III injury (6 cases) ( P < 0.05 ). Conventional MRI was recommended to observe the ATFL and PTFL, and the valgus position MRI was recommended for the calcaneofibular ligament (CFL); conservative treatment was recommended for patients with grades I and II AJI, but surgical treatment was recommended for patients with grade III AJI.


2018 ◽  
Vol 47 (2) ◽  
pp. 431-437 ◽  
Author(s):  
Kenneth J. Hunt ◽  
Helder Pereira ◽  
Judas Kelley ◽  
Nicholas Anderson ◽  
Richard Fuld ◽  
...  

Background: Acute inversion ankle sprains are among the most common musculoskeletal injuries. Higher grade sprains, including anterior talofibular ligament (ATFL) and calcaneofibular ligament (CFL) injury, can be particularly challenging. The precise effect of CFL injury on ankle instability is unclear. Hypothesis: CFL injury will result in decreased stiffness, decreased peak torque, and increased talar and calcaneal motion and will alter ankle contact mechanics when compared with the uninjured ankle and the ATFL-only injured ankle in a cadaveric model. Study Design: Descriptive laboratory study. Methods: Ten matched pairs of cadaver specimens with a pressure sensor in the ankle joint and motion trackers on the fibula, talus, and calcaneus were mounted on a material testing system with 20° of ankle plantarflexion and 15° of internal rotation. Intact specimens were axially loaded to body weight and then underwent inversion along the anatomic axis of the ankle from 0° to 20°. The ATFL and CFL were sequentially sectioned and underwent inversion testing for each condition. Linear mixed models were used to determine significance for stiffness, peak torque, peak pressure, contact area, and inversion angles of the talus and calcaneus relative to the fibula across the 3 conditions. Results: Stiffness and peak torque did not significantly decrease after sectioning of the ATFL but decreased significantly after sectioning of the CFL. Peak pressures in the tibiotalar joint decreased and mean contact area increased significantly after CFL release. Significantly more inversion of the talus and calcaneus as well as calcaneal medial displacement was seen with weightbearing inversion after sectioning of the CFL. Conclusion: The CFL contributes considerably to lateral ankle instability. Higher grade sprains that include CFL injury result in significant decreases in rotation stiffness and peak torque, substantial alteration of contact mechanics at the ankle joint, increased inversion of the talus and calcaneus, and increased medial displacement of the calcaneus. Clinical Relevance: Repair of an injured CFL should be considered during lateral ligament reconstruction, and there may be a role for early repair in high-grade injuries to avoid intermediate and long-term consequences of a loose or incompetent CFL.


2021 ◽  
Vol 9 (11) ◽  
pp. 232596712110472
Author(s):  
Han Yang ◽  
Minghao Su ◽  
Zhimin Chen ◽  
Rongmei Qu ◽  
Zhirong Yuan ◽  
...  

Background: The anterior talofibular ligament (ATFL) and calcaneofibular ligament (CFL) contribute greatly to the overall stability of the ankle joint; however, ATFL and combined ATFL-CFL sprains are common. Anatomic reconstruction of the lateral collateral ligament with grafts has been proposed for patients with poor tissue quality or inadequate local tissue. Anatomic reconstruction of the lateral ankle ligaments requires a good understanding of their anatomic location. Purpose: To describe the anatomy of the ATFL and CFL ligaments quantitatively and qualitatively and explore the relationship of some morphological parameters. Study Design: Descriptive laboratory study. Methods: A total of 66 adult ankle specimens were analyzed for ATFL band type, origin, length, width, thickness, and angle between the ATFL and CFL, and 73 adult ankle specimens were used for measuring the origin of the CFL. The coefficient of variation was used to describe and compare the respective variability of angle, length, width, and thickness. The origin of the ATFL was labeled as point A, and the leading edge of the CFL intersection with the articular surface of the calcaneus was considered point B. Results: The ATFL had a variable number of bands. A high degree of variability (coefficient of variation >0.2) was seen for most morphological measurements of the ATFL. In addition, the length of distance AB also varied. The CFL originated at the tip of the fibula in only 9% of specimens. It was found more commonly at the anterior border of the lateral malleolus (4.94 ± 1.70 mm from the tip). The angle between the ATFL and CFL was consistent at 100° to 105º. Conclusion: A fair amount of variability of ATFL length, width, and thickness were found in our study, with less variability in the ATFL-CFL angle. Most CFLs attached anterior to the tip of the fibula. Clinical Relevance: Providing relevant anatomic data of ATFL and CFL is important in ensuring proper surgical treatment of ankle joint injuries.


2000 ◽  
Vol 21 (6) ◽  
pp. 486-491 ◽  
Author(s):  
Yuki Tochigi ◽  
Kazuhisa Takahashi ◽  
Masatsune Yamagata ◽  
Tamotsu Tamaki

The present study aims to clarify the influence of the interosseous talocalcaneal ligament (ITCL) injury associated with injury to the lateral ankle ligaments on the ankle-subtalar joint complex motion under conditions of physiologic loading. We conducted mechanical tests using five fresh cadaveric lower extremities. Each specimen was mounted in the loading device and an axial cyclic load from 9.8 to 686 N was applied. Three-dimensional rotations of the ankle and the subtalar joint were measured simultaneously by a linkage electric goniometer. Mechanical tests were repeated after sectioning of the anterior talofibular ligament (ATFL), and again after additional sectioning of the ITCL. In the intact condition, the ankle and the subtalar joints rotated consistently with increase of the load. The predominant rotations were plantar flexion and adduction at the ankle joint, with some eversion demonstrated at the subtalar joint. Although ATFL sectioning did not significantly change the motion of the two joints, additional sectioning of the ITCL significantly increased adduction and total rotation of the ankle joint. The present study demonstrated that a combined injury of the ATFL and the ITCL can induce anterolateral rotatory instability of the ankle joint under conditions of axial loading.


2018 ◽  
Vol 3 (3) ◽  
pp. 2473011418S0044
Author(s):  
Hiroaki Shoji ◽  
Atsushi Teramoto ◽  
Yuzuru Sakakibara ◽  
Tomoaki Kamiya ◽  
Kota Watanabe ◽  
...  

Category: Ankle Introduction/Purpose: Chronic ankle instability (CAI) often needs surgical treatment if conservative treatment is ineffective. Recently, arthroscopic surgeries have become widely used to treat CAI. Although it is crucial to accurately ascertain the anterior talofibular ligament (ATFL) attachment site under arthroscopy, previous study showed that it might not be feasible to thoroughly observe the ATFL attachment site, and repair or reconstruction position were often unintentionally carried out proximal to the ATFL attachment site at the fibula as a result. Currently, there are few reports about stability of the ankle joint by different repair position of ATFL. The aim of this study was to evaluate the stability of the ankle joint by different repair position of ATFL. Methods: Six fresh-frozen human cadaveric ankles with the mean age of 83.5 ± 7.3 years were used. The ankles were tested using a six-degrees of freedom robotic system. The following ankle states were evaluated: intact, ATFL transection, ATFL anatomical repair, and ATFL non-anatomical repair. ATFL was transected at fibular attachment. Anatomical repair was performed at the center of original ATFL attachment of the fibula. Non-anatomical repair was set 8mm proximal from anatomical ATFL attachment of the fibula. At each state, laxity of anterior translation under 60 N load, inversion under 1.7 Nm load, and internal rotation under 1.7 Nm load were evaluated. Each test was performed at 30 degrees plantarflexion (PF), 15 degrees PF, 0 degree, and 15 degrees dorsiflexion (DF). The one-way repeated measures analysis of variance (ANOVA) with post hoc pairwise comparisons with Dunnett’s test was adopted. A P value of 0.05 was chosen as the level of significance. Results: Anterior translation under 60 N load was significantly increased in transection condition at 30 degrees PF compared with the intact condition (P=0.005). Anatomical repair and Non-anatomical repair did not show significant differences. Inversion under 1.7 Nm load was significantly increased in transection condition at 30 and 15 degrees PF compared with the intact condition (P=0.004, =0.049). Anatomical repair and Non-anatomical repair did not show significant differences. Internal rotation under 1.7 Nm load was significantly increased in transection condition at 30, 15 degrees PF and 0 degree compared with the intact condition (P<0.001, <0.001, and <0.001). Although anatomical repair did not show significant differences, non-anatomical repair showed significant increase at 30 and 15 degrees compared with the intact condition (P=0.006, =0.026). (Fig. 1). Conclusion: Anatomical repair did not show significant difference in all three loads with the intact condition. In non-anatomical repair, anterior translation and inversion did not show significant difference, but internal rotation significantly increased at 30 and 15 degrees PF compared with the intact condition. Compared with anatomical repair, non-anatomical repair might become more vertical ligament running because its attachment site of the fibula was more proximal. This difference might affect stability of the ankle joint. Anatomical repair of the ATFL might be essential to obtain the stability of the ankle joint like the intact condition.


Sign in / Sign up

Export Citation Format

Share Document