Evidence For MTOR Signaling In Normal Human Lungs And Idiopathic Pulmonary Fibrosis (IPF)

Author(s):  
Philip L. Sannes ◽  
Katherine Franklin ◽  
Ariel Hickey ◽  
Helena Morales Johansson ◽  
Donna Newman
2006 ◽  
Vol 291 (5) ◽  
pp. L887-L895 ◽  
Author(s):  
Xiaopeng Li ◽  
Maria Molina-Molina ◽  
Amal Abdul-Hafez ◽  
Jose Ramirez ◽  
Anna Serrano-Mollar ◽  
...  

Previous work from this laboratory demonstrated de novo synthesis of angiotensin (ANG) peptides by apoptotic pulmonary alveolar epithelial cells (AEC) and by lung myofibroblasts in vitro and in bleomycin-treated rats. To determine whether these same cell types also synthesize ANG peptides de novo within the fibrotic human lung in situ, we subjected paraffin sections of normal and fibrotic (idiopathic pulmonary fibrosis, IPF) human lung to immunohistochemistry (IHC) and in situ hybridization to detect ANG peptides and angiotensinogen (AGT) mRNA. These were analyzed both alone and in combination with cell-specific markers of AEC [monoclonal antibody (MAb) MNF-116] and myofibroblasts [α-smooth muscle actin (α-SMA) MAb] and an in situ DNA end labeling (ISEL) method to detect apoptosis. In normal human lung, IHC detected AGT protein in smooth muscle underlying normal bronchi and vessels, but not elsewhere. Real-time RT-PCR and Western blotting revealed that AGT mRNA and protein were 21-fold and 3.6-fold more abundant, respectively, in IPF lung biopsies relative to biopsies of normal human lung (both P < 0.05). In IPF lung, both AGT protein and mRNA were detected in AEC that double-labeled with MAb MNF-116 and with ISEL, suggesting AGT expression by apoptotic epithelia in situ. AGT protein and mRNA also colocalized to myofibroblast foci detected by α-SMA MAb, but AGT mRNA was not detected in smooth muscle. These data are consistent with earlier data from isolated human lung cells in vitro and bleomycin-induced rat lung fibrosis models, and they suggest that apoptotic AEC and myofibroblasts constitute key sources of locally derived ANG peptides in the IPF lung.


2020 ◽  
Author(s):  
Juan Li ◽  
Ping Li ◽  
Guojun Zhang ◽  
Pan Qin ◽  
Da Zhang ◽  
...  

Abstract The excessive activation and proliferation of lung fibroblasts are responsible for the abundant deposition of extracellular matrix (ECM) in idiopathic pulmonary fibrosis (IPF), while its specific mechanism is still unknown. This study focuses on the role of circRNA (circ) TADA2A in functional abnormalities of lung fibroblasts and aims to elaborate its regulatory mechanism. In the present study, circTADA2A was down-regulated in both IPF primary human lung fibroblasts and human IPF fibroblastic cell lines. Functionally, the overexpression of circTADA2A repressed the activation and proliferation of normal human fibroblastic cell line induced by several fibrogenic growth factors. Using fluorescence in situ hybridization (FISH), luciferase reporter assays, and RNA pull-down, circTADA2A was confirmed to function as sponges of miR-526b and miR-203, thus releasing the expression of Caveolin (Cav)-1 and Cav-2. The overexpression of circTADA2A suppressed lung fibroblasts activation via Cav-1 and reduced lung fibroblasts proliferation via Cav-2. In vivo experiments also confirmed that the overexpression of circTADA2A decreased fibrogenic responses induced by bleomycin in lung fibrosis mice. Collectively, circTADA2A repressed lung fibroblasts activation via miR-526b/Cav-1 and reduced lung fibroblasts proliferation via miR-203/Cav-2, thus inhibiting the excessive deposition of ECM and relieving IPF.


Pneumologie ◽  
2011 ◽  
Vol 65 (12) ◽  
Author(s):  
S Barkha ◽  
M Gegg ◽  
H Lickert ◽  
M Königshoff

Pneumologie ◽  
2012 ◽  
Vol 66 (06) ◽  
Author(s):  
P Mahavadi ◽  
S Ahuja ◽  
I Henneke ◽  
W Klepetko ◽  
C Ruppert ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document