human lung fibroblasts
Recently Published Documents


TOTAL DOCUMENTS

686
(FIVE YEARS 67)

H-INDEX

60
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Maurizio Chioccioli ◽  
Subhadeep Roy ◽  
Kevin Rigby ◽  
Rachel Newell ◽  
Oliver Dansereau ◽  
...  

AbstractmicroRNAs are non-coding RNAs that negatively regulate gene networks. Previously, we reported a systemically delivered miR-29 mimic MRG-201 that reduced fibrosis in animal models, but at doses prohibiting clinical translation. Here, we generated MRG-229, a next-gen miR-29 mimic with improved chemical stability, conjugated with the internalization moiety BiPPB (PDGFbetaR-specific bicyclic peptide). In TGF-b-treated human lung fibroblasts and precision cut lung slices, MRG-229 decreased COL1A1 and ACTA2 gene expression and reduced collagen production. In bleomycin-treated mice, intravenous or subcutaneous delivery of MRG-229 downregulated profibrotic gene programs at doses more than ten-fold lower than the original compound. In rats and non-human primates, and at clinically relevant doses, MRG-229 was well tolerated, with no adverse findings observed. In human peripheral blood decreased mir-29 concentrations were associated with increased mortality in two cohorts potentially identified as a target population for treatment. Collectively, our results provide support for the development of MRG-229 as a potential therapy in humans with IPF.One Sentence SummaryOne Sentence Summary: A stabilized, next-generation miR-29 mimic has been developed that demonstrates efficacy at commercially viable doses with a robust safety margin in non-human primates.


2021 ◽  
Vol 172 (2) ◽  
pp. 245-249
Author(s):  
S. M. Rodneva ◽  
A. A. Osipov ◽  
D. V. Guryev ◽  
A. A. Tsishnatti ◽  
Y. А. Fedotov ◽  
...  

Author(s):  
Mary T. Doolin ◽  
Ian M. Smith ◽  
Kimberly M. Stroka

Idiopathic pulmonary fibrosis (IPF) is a chronic disease of the lung caused by a rampant inflammatory response that results in the deposition of excessive extracellular matrix (ECM). IPF patient lungs also develop fibroblastic foci that consist of activated fibroblasts and myofibroblasts. In concert with ECM deposition, the increased cell density within fibroblastic foci imposes confining forces on lung fibroblasts. In this work, we observed that increased cell density increases the incidence of fibroblast to myofibroblast transition (FMT), but mechanical confinement imposed by micropillars has no effect on FMT incidence. We found that human lung fibroblasts (HLFs) express more α-SMA and deposit more collagen matrix, which are both characteristics of myofibroblasts, in response to TGF-β1 when cells were seeded at a high density compared to a medium or a low density. These results support the hypothesis that HLFs undergo FMT more readily in response to TGF-β1 when cells are densely packed, and this effect could be dependent on increased OB-cadherin expression. This work demonstrates that cell density is an important factor to consider when modelling IPF in vitro, and it may suggest decreasing cell density within fibroblastic foci as a strategy to reduce IPF burden.


2021 ◽  
pp. 110114
Author(s):  
Qingzhu Sun ◽  
Li Liu ◽  
Jyotshna Mandal ◽  
Antonio Molino ◽  
Daiana Stolz ◽  
...  

2021 ◽  
Author(s):  
Kenta Murata ◽  
Nina Fujita ◽  
Ryuji Takahashi

Abstract BackgroundCigarette smoke is a major risk factor for various lung diseases, such as chronic obstructive pulmonary disease (COPD). Ninjinyoeito (NYT), a traditional Chinese medicine, has been prescribed for patients with post-illness or post-operative weakness, fatigue, loss of appetite, rash, cold limbs, and anemia. In addition to its traditional use, NYT has been prescribed for treating frailty in gastrointestinal, respiratory, and urinary functions. Further, NYT treatment can ameliorate cigarette smoke-induced lung injury, which is a destructive index in mice; however, the detailed underlying mechanism remains unknown. PurposeThe purpose of this study was to investigate whether NYT ameliorates cigarette smoke-induced lung injury and inflammation in human lung fibroblasts and determine its mechanism of action. MethodsWe prepared a cigarette smoke extract (CSE) from commercially available cigarettes to induce cell injury and inflammation in the human lung fibroblast cell line HFL1. The cells were pretreated with NYT for 24 h prior to CSE exposure. Cytotoxicity and cell viability were measured by lactate dehydrogenase (LDH) cytotoxicity assay and cell counting kit (CCK)-8. IL-8 level in the cell culture medium was measured by performing Enzyme-Linked Immuno Sorbent Assay (ELISA). To clarify the mechanisms of NYT, we used CellROX Green Reagent for reactive oxygen species (ROS) production and western blotting analysis for cell signaling.ResultsExposure of HFL1 cells to CSE for 24 h induced apoptosis and interleukin (IL)-8 release. Pretreatment with NYT inhibited apoptosis and IL-8 release. Furthermore, CSE exposure for 24 h increased the production of ROS and phosphorylation levels of p38 and JNK. Pretreatment with NYT only inhibited CSE-induced JNK phosphorylation, and not ROS production and p38 phosphorylation. These results suggest that NYT acts as a JNK-specific inhibitor.ConclusionNYT treatment ameliorated CSE-induced apoptosis and inflammation by inhibiting the JNK signaling pathway. Finally, these results suggest that NYT may be a promising therapeutic agent for patients with COPD.


2021 ◽  
pp. 109158182110448
Author(s):  
Stephanie Recillas-Román ◽  
Martha Montaño ◽  
Víctor Ruiz ◽  
Julia Pérez-Ramos ◽  
Carina Becerril ◽  
...  

Wood smoke (WS) contains many harmful compounds, including polycyclic aromatic hydrocarbons (PAHs). WS induces inflammation in the airways and lungs and can lead to the development of various acute and chronic respiratory diseases. Pulmonary fibroblasts are the main cells involved in the remodeling of the extracellular matrix (ECM) during the WS-induced inflammatory response. Although fibroblasts remain in a low proliferation state under physiological conditions, they actively participate in ECM remodeling during the inflammatory response in pathophysiological states. Consequently, we used normal human lung fibroblasts (NHLFs) to assess the potential effects of the PAHs-containing wood smoke extract (WSE) on the growth rate, total collagen synthesis, and the expression levels of collagen I and III, matrix metalloproteinase (MMP)-1, MMP-2, MMP-9, tissue inhibitor of metalloproteinase (TIMP)-1, TIMP-2, and the transforming growth factor (TGF)-β1. We also assessed MMPs activity. The results showed that WSE induced a trimodal behavior in the growth rate curves in NHLFs; the growth rate increased with 0.5-1 % WSE and decreased with 2.5% WSE, without causing cell damage; 5-20% WSE inhibited the growth and induced cell damage. After 3 hours of exposure, 2.5% WSE induced an increase in total collagen synthesis and upregulation of TGF-β1, collagen I and III, MMP-1, TIMP-1, and TIMP-2 expression. However, MMP-2 expression was downregulated and MMP-9 was not expressed. The gelatinase activity of MMP-2 was also increased. These results suggest that WSE affects the ECM remodeling in NHLFs and indicate the potential involvement of PAHs in this process.


Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1162
Author(s):  
David W. Waters ◽  
Michael Schuliga ◽  
Prabuddha S. Pathinayake ◽  
Lan Wei ◽  
Hui-Ying Tan ◽  
...  

Idiopathic pulmonary fibrosis (IPF) is a chronic disease characterised by a dense fibrosing of the lung parenchyma. An association between IPF and cellular senescence is well established and several studies now describe a higher abundance of senescent fibroblasts and epithelial cells in the lungs of IPF patients compared with age-matched controls. The cause of this abnormal accumulation of senescent cells is unknown but evidence suggests that, once established, senescence can be transferred from senescent to non-senescent cells. In this study, we investigated whether senescent human lung fibroblasts (LFs) and alveolar epithelial cells (AECs) could induce a senescent-like phenotype in “naïve” non-senescent LFs in vitro. Primary cultures of LFs from adult control donors (Ctrl-LFs) with a low baseline of senescence were exposed to conditioned medium (CM) from: (i) Ctrl-LFs induced to become senescent using H2O2 or etoposide; (ii) LFs derived from IPF patients (IPF-LFs) with a high baseline of senescence; or (iii) senescence-induced A549 cells, an AEC line. Additionally, ratios of non-senescent Ctrl-LFs and senescence-induced Ctrl-LFs (100:0, 0:100, 50:50, 90:10, 99:1) were co-cultured and their effect on induction of senescence measured. We demonstrated that exposure of naïve non-senescent Ctrl-LFs to CM from senescence-induced Ctrl-LFs and AECs and IPF-LFs increased the markers of senescence including nuclear localisation of phosphorylated-H2A histone family member X (H2AXγ) and expression of p21, IL-6 and IL-8 in Ctrl-LFs. Additionally, co-cultures of non-senescent and senescence-induced Ctrl-LFs induced a senescent-like phenotype in the non-senescent cells. These data suggest that the phenomenon of “senescence-induced senescence” can occur in vitro in primary cultures of human LFs, and provides a possible explanation for the abnormal abundance of senescent cells in the lungs of IPF patients.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hsing-Yu Hsu ◽  
Cheng-Wei Yang ◽  
Yue-Zhi Lee ◽  
Yi-Ling Lin ◽  
Sui-Yuan Chang ◽  
...  

Remdesivir, a prodrug targeting RNA-dependent-RNA-polymerase, and cyclosporine, a calcineurin inhibitor, individually exerted inhibitory activity against human coronavirus OC43 (HCoV-OC43) in HCT-8 and MRC-5 cells at EC50 values of 96 ± 34 ∼ 85 ± 23 nM and 2,920 ± 364 ∼ 4,419 ± 490 nM, respectively. When combined, these two drugs synergistically inhibited HCoV-OC43 in both HCT-8 and MRC-5 cells assayed by immunofluorescence assay (IFA). Remdesivir and cyclosporine also separately reduced IL-6 production induced by HCoV-OC43 in human lung fibroblasts MRC-5 cells with EC50 values of 224 ± 53 nM and 1,292 ± 352 nM, respectively; and synergistically reduced it when combined. Similar trends were observed for SARS-CoV-2, which were 1) separately inhibited by remdesivir and cyclosporine with respective EC50 values of 3,962 ± 303 nM and 7,213 ± 143 nM by IFA, and 291 ± 91 nM and 6,767 ± 1,827 nM by a plaque-formation assay; and 2) synergistically inhibited by their combination, again by IFA and plaque-formation assay. Collectively, these results suggest that the combination of remdesivir and cyclosporine merits further study as a possible treatment for COVID-19 complexed with a cytokine storm.


Sign in / Sign up

Export Citation Format

Share Document