Distinctive Patterns of Pulmonary Function Change According to Baseline Lung Volume and Diffusing Capacity

Author(s):  
J. Kang ◽  
Y.-M. Oh ◽  
J.-H. Lee ◽  
E.K. Kim ◽  
S.Y. Lim ◽  
...  
2020 ◽  
Vol 24 (6) ◽  
pp. 597-605
Author(s):  
J. Kang ◽  
Y-M. Oh ◽  
J-H. Lee ◽  
E. K. Kim ◽  
S. Y. Lim ◽  
...  

SETTING: Multicentre retrospective study in South Korea.OBJECTIVE: To longitudinally evaluate changes in lung volume and diffusing capacity for carbon monoxide (DLCO) with forced expiratory volume in 1 sec (FEV1).DESIGN: A total of 155 patients with chronic obstructive pulmonary disease (COPD), whose pulmonary function parameters were measured annually for 5 years, were selected from a prospective cohort in South Korea. A random coefficients model was used to estimate mean annual FEV1, lung volume parameter and DLCO change rates.RESULTS: Patients were classified into four groups based on baseline DLCO and residual volume/total lung capacity (RV/TLC) measurements. The annual FEV1 decline rate was greater in patients with low DLCO than in those with normal DLCO, with the greatest decline occurring in patients with low DLCO and normal RV/TLC. RV and RV/TLC declined in patients with high RV/TLC, whereas these increased in patients with normal RV/TLC. DLCO decreased longitudinally in all four groups, with the greatest decline occurring in patients with normal DLCO and normal RV/TLC.CONCLUSIONS: Different subgroups of patients with COPD exhibited distinctive pulmonary function change patterns. Baseline DLCO and RV/TLC may be used as physiological markers to predict long-term changes in pulmonary function.


2018 ◽  
Vol 2018 ◽  
pp. 1-5 ◽  
Author(s):  
Kazushige Shiraishi ◽  
Torahiko Jinta ◽  
Naoki Nishimura ◽  
Hiroshi Nakaoka ◽  
Ryosuke Tsugitomi ◽  
...  

Background. Although digital clubbing is a common presentation in patients with interstitial lung disease (ILD), little has been reported regarding its role in assessing patients with ILD. This study evaluated patients with ILD for the presence of clubbing and investigated its association with clinical data. Methods. We evaluated patients with ILD who visited the teaching hospital at which the study was conducted, between October 2014 and January 2015. Clubbing, evaluated using a Vernier caliper for individual patients, was defined as a phalangeal depth ratio > 1. We examined the association of clubbing with clinical data. Results. Of 102 patients with ILD, we identified 17 (16.7%) with clubbing. The partial pressure of oxygen in arterial blood was lower (65.2 ± 5.9 mmHg versus 80.2 ± 3.1 mmHg; p=0.03), serum Krebs von den Lugen-6 (KL-6) levels were higher (1495.0 ± 277.4 U/mL versus 839.1 ± 70.2 U/mL; p=0.001), and the percent predicted diffusing capacity of carbon monoxide was lower (50.0 ± 6.0 versus 73.5 ± 3.1; p=0.002) in these patients with clubbing. Conclusions. Patients with clubbing had lower oxygen levels, higher serum KL-6 levels, and lower pulmonary function than those without clubbing.


1991 ◽  
Vol 71 (3) ◽  
pp. 878-885 ◽  
Author(s):  
J. M. Clark ◽  
R. M. Jackson ◽  
C. J. Lambertsen ◽  
R. Gelfand ◽  
W. D. Hiller ◽  
...  

As a pulmonary component of Predictive Studies V, designed to determine O2 tolerance of multiple organs and systems in humans at 3.0–1.5 ATA, pulmonary function was evaluated at 1.0 ATA in 13 healthy men before and after O2 exposure at 3.0 ATA for 3.5 h. Measurements included flow-volume loops, spirometry, and airway resistance (Raw) (n = 12); CO diffusing capacity (n = 11); closing volumes (n = 6); and air vs. HeO2 forced vital capacity maneuvers (n = 5). Chest discomfort, cough, and dyspnea were experienced during exposure in mild degree by most subjects. Mean forced expiratory volume in 1 s (FEV1) and forced expiratory flow at 25–75% of vital capacity (FEF25–75) were significantly reduced postexposure by 5.9 and 11.8%, respectively, whereas forced vital capacity was not significantly changed. The average difference in maximum midexpiratory flow rates at 50% vital capacity on air and HeO2 was significantly reduced postexposure by 18%. Raw and CO diffusing capacity were not changed postexposure. The relatively large change in FEF25–75 compared with FEV1, the reduction in density dependence of flow, and the normal Raw postexposure are all consistent with flow limitation in peripheral airways as a major cause of the observed reduction in expiratory flow. Postexposure pulmonary function changes in one subject who convulsed at 3.0 h of exposure are compared with corresponding average changes in 12 subjects who did not convulse.


2022 ◽  
Author(s):  
Xin Yu ◽  
Ming-Hui Zhang ◽  
Yan-Hao Huang ◽  
Yu Deng ◽  
You-Zhen Feng ◽  
...  

Abstract Background: Obesity is associated with excessive airway collapse and reduced lung volume; it is unknown whether it affects airway-lung interactions. We sought to compare the airway tree to lung volume ratio, assessed by CT, in obese individuals with and without ventilation disorders.Methods: Participants underwent inspiratory chest CT and pulmonary function. The percentage ratio of the whole airway tree to lung volume, automatically segmented via deep learning, was defined as CT airway volume percent (AWV%). Total airway count (TAC), airway wall area percent (WA%), and other CT indexes were also measured. Results: We evaluated 88 participants including adolescents(age: 14-18, n= 12) and adults (age: 19-25, n= 17; age: 26-35, n= 39; age> 35, n= 20). Obese adolescents had higher forced vital capacity (FVC) (P = 0.001) and lower AWV% (P = 0.008) than obese adults (age >35). Among obese adults, participants with restrictive disorders had larger AWV% (P < 0.001) and those with obstructive disorders showed smaller AWV% (P < 0.001) compared to participants with normal ventilation. AWV% was positively correlated with age and forced expiratory volume in 1 second (FEV1)/FVC and adversely related to FVC (P< 0.05 for all), and in multivariate models, AWV% independently predicted FEV1/FVC (R2 = 0.49, P < 0.001) and FVC (R2 = 0.60, P < 0.001).Conclusion: Transitions in lung function patterns between obese adolescents and adults are associated with airway to lung ratios. The obesity-induced disproportion between the airway tree and lung volume may adversely affect and complicate lung ventilation.


2019 ◽  
Vol 7 (24) ◽  
pp. 4389-4392
Author(s):  
Nguyen Truong Giang ◽  
Trung Nguyen Ngoc ◽  
Nguyen Van Nam ◽  
Nguyen Viet Nhung ◽  
Ta Ba Thang ◽  
...  

BACKGROUND: Lung volume reduction surgery (LVRS) was introduced to alleviate clinical conditions in selected patients with heterogenous emphysema. Clarifying the most suitable patients for LVRS remained unclear. AIM: This study was undertaken to specifically analyze the preoperative factor affecting to LVRS. METHODS: The prospective study was conducted at 103 Military Hospital between July 2014 and April 2016. Severe heterogenous emphysema patients were selected to participate in the study. The information, spirometry, and body plethysmographic pulmonary function tests in 31 patients who underwent LVRS were compared with postoperative outcomes (changing in FEV1 and CAT scale). RESULTS: Of the 31 patients, there was statistically significant difference in the outcome of functional capacity, lung function between two groups (FEV1 ≤ 50% and > 50%) (∆FEV1: 22.46 vs 18.32%; p = 0.042. ∆CAT: 6.85 vs 5.07; p = 0.048). Changes of the FEV1 and CAT scale were no statistically significant differences in three groups residual volume. Patients with total lung capacity < 140% had more improved than others (∆FEV1: 23.81 vs 15.1%; p = 0.031). CONCLUSION: Preoperative spirometry and body plethysmographic pulmonary function tests were useful measures to selected severe heterogenous emphysema patients for LVRS. Patients with FEV1 ≤ 50%, TLC in the range of 100-140% should be selected.


Author(s):  
Nathachit Limjunyawong ◽  
Jonathan Fallica ◽  
Amritha Ramakrishnan ◽  
Kausik Datta ◽  
Matthew Gabrielson ◽  
...  

2020 ◽  
Vol 29 (158) ◽  
pp. 190171
Author(s):  
Marlies van Dijk ◽  
Karin Klooster ◽  
Nick H.T. Ten Hacken ◽  
Frank Sciurba ◽  
Huib. A.M. Kerstjens ◽  
...  

Lung volume reduction (LVR) treatment in patients with severe emphysema has been shown to have a positive effect on hyperinflation, expiratory flow, exercise capacity and quality of life. However, the effects on diffusing capacity of the lungs and gas exchange are less clear. In this review, the possible mechanisms by which LVR treatment can affect diffusing capacity of the lung for carbon monoxide (DLCO) and arterial gas parameters are discussed, the use of DLCO in LVR treatment is evaluated and other diagnostic techniques reflecting diffusing capacity and regional ventilation (V′)/perfusion (Q′) mismatch are considered.A systematic review of the literature was performed for studies reporting on DLCO and arterial blood gas parameters before and after LVR surgery or endoscopic LVR with endobronchial valves (EBV). DLCO after these LVR treatments improved (40 studies, n=1855) and the mean absolute change from baseline in % predicted DLCO was +5.7% (range −4.6% to +29%), with no real change in blood gas parameters. Improvement in V′ inhomogeneity and V′/Q′ mismatch are plausible explanations for the improvement in DLCO after LVR treatment.


1963 ◽  
Vol 18 (1) ◽  
pp. 89-96 ◽  
Author(s):  
Kaye H. Kilburn ◽  
Harry A. Miller ◽  
John E. Burton ◽  
Ronald Rhodes

Alterations in the steady-state diffusing capacity for carbon monoxide (Dco) by the method of Filley, MacIntosh, and Wright, produced by sequential changes in the pattern of breathing were studied in anesthetized, paralyzed, artificially ventilated dogs. The Dco of paralyzed, artificially ventilated control dogs did not differ significantly during 3 hr from values found in conscious and anesthetized controls. A fivefold increase in tidal volume without changing frequency of breathing raised alveolar ventilation and CO uptake 500% and Dco 186%. A high correlation between tidal volume and Dco was noted during reciprocal alterations of tidal volume and rate which maintained minute volume. The Dco appeared to fall when alveolar ventilation was tripled by increments of rate with a fixed-tidal volume, despite a 63% increase in CO uptake. Doubling end-expiratory lung volume by positive pressure breathing without altering tidal volume or rate did not affect Dco. The addition of 100 ml of external dead space with rate and tidal volume constant decreased Dco to 42% of control level, however, stepwise reduction of dead space from 100 ml to 0 in two dogs failed to change Dco. Added dead space equal to frac12 tidal volume (170 ml) reduced Dco to 25% of control in two dogs with a return to control with removal of dead space. Thus, in paralyzed artificially ventilated dogs, tidal volume appears to be the principal ventilatory determinant of steady-state Dco. Dco is minimally affected by increases in alveolar ventilation with a constant tidal volume effected by increasing the frequency of breathing. Prolonged ventilation, at fixed rate and volume, and increased dead space either did not effect, or they reduced Dco, perhaps by rendering less uniform the distribution of gas, and blood in the lungs. Although lung volume was doubled by positive-pressure breathing, pulmonary capillary blood volume was probably reduced to produce opposing effects on diffusing capacity and no net change. Submitted on March 14, 1962


Sign in / Sign up

Export Citation Format

Share Document