scholarly journals Influence of New Carbamide Peroxide on Proliferation and Apoptosis of Human Pulmonary Artery Endothelial Cell

Author(s):  
X. Meng ◽  
P. Yuan ◽  
X. Huai ◽  
Z. Lv ◽  
S. Yuanyuan ◽  
...  
2002 ◽  
Vol 15 (1) ◽  
pp. 25-33 ◽  
Author(s):  
Seitaro Okamura ◽  
Shingo Ameshima ◽  
Yoshiki Demura ◽  
Takeshi Ishizaki ◽  
Shigeru Matsukawa ◽  
...  

1997 ◽  
Vol 112 (3) ◽  
pp. 262-269 ◽  
Author(s):  
Takashi Furuno ◽  
Takashi Mitsuyama ◽  
Kouka Hidaka ◽  
Takuo Tanaka ◽  
Nobuyuki Hara

Respiration ◽  
1997 ◽  
Vol 64 (3) ◽  
pp. 206-210 ◽  
Author(s):  
Takashi Mitsuyama ◽  
Takashi Furuno ◽  
Kouko Hidaka ◽  
Takuo Tanaka ◽  
Masayoshi Abe ◽  
...  

1996 ◽  
Vol 270 (5) ◽  
pp. L695-L703 ◽  
Author(s):  
A. L. Parker ◽  
L. L. Likar ◽  
D. D. Dawicki ◽  
S. Rounds

Previously we have shown that ATP enhances the adherence of HL-60 cells and human neutrophils to bovine pulmonary artery endothelial cells. The current investigations extend earlier findings by showing that ATP and UTP dose-dependently stimulate human neutrophil adherence to human pulmonary artery endothelial cells. We have also explore the mechanisms of ATP- and UTP-stimulated adherence. We have found that fucose, a component of selectin receptors, inhibits ATP-stimulated HL-60 cell-bovine pulmonary artery endothelial cell adhesion. Additionally, pretreatment of HL-60 cells with neuraminidase abolishes ATP enhancement. However, fucose does not affect ATP- or thrombin-induced adhesion of freshly isolated human neutrophils to human endothelial cells. Antibodies to human P-selection intercellular adhesion molecule (ICAM)-1, and the beta-subunit of CD11/CD18 do not alter ATP-induced adherence of HL-60 cells to bovine endothelial cells. Similarly, antibodies to human P-selectin and ICAM-1 do not inhibit human neutrophil-human pulmonary artery endothelial cell adhesion. The platelet-activating factor receptor antagonists, WEB-2086 and L-659,989, are effective in attenuating ATP- and UTP-stimulated adherence. Preincubation of neutrophils or human pulmonary artery endothelial cells with ATP or UTP also enhances adherence, an effect that is blocked by L-659,989. Thus platelet activating factor, associated with both neutrophils and endothelial cells, mediates ATP- and UTP-induced neutrophil adherence. ATP, released during vascular injury, may exacerbate neutrophil-endothelial cell interaction and thereby contribute to neutrophil-induced injury.


2019 ◽  
Vol 133 (20) ◽  
pp. 2045-2059 ◽  
Author(s):  
Da Zhang ◽  
Xiuli Wang ◽  
Siyao Chen ◽  
Selena Chen ◽  
Wen Yu ◽  
...  

Abstract Background: Pulmonary artery endothelial cell (PAEC) inflammation is a critical event in the development of pulmonary arterial hypertension (PAH). However, the pathogenesis of PAEC inflammation remains unclear. Methods: Purified recombinant human inhibitor of κB kinase subunit β (IKKβ) protein, human PAECs and monocrotaline-induced pulmonary hypertensive rats were employed in the study. Site-directed mutagenesis, gene knockdown or overexpression were conducted to manipulate the expression or activity of a target protein. Results: We showed that hydrogen sulfide (H2S) inhibited IKKβ activation in the cell model of human PAEC inflammation induced by monocrotaline pyrrole-stimulation or knockdown of cystathionine γ-lyase (CSE), an H2S generating enzyme. Mechanistically, H2S was proved to inhibit IKKβ activity directly via sulfhydrating IKKβ at cysteinyl residue 179 (C179) in purified recombinant IKKβ protein in vitro, whereas thiol reductant dithiothreitol (DTT) reversed H2S-induced IKKβ inactivation. Furthermore, to demonstrate the significance of IKKβ sulfhydration by H2S in the development of PAEC inflammation, we mutated C179 to serine (C179S) in IKKβ. In purified IKKβ protein, C179S mutation of IKKβ abolished H2S-induced IKKβ sulfhydration and the subsequent IKKβ inactivation. In human PAECs, C179S mutation of IKKβ blocked H2S-inhibited IKKβ activation and PAEC inflammatory response. In pulmonary hypertensive rats, C179S mutation of IKKβ abolished the inhibitory effect of H2S on IKKβ activation and pulmonary vascular inflammation and remodeling. Conclusion: Collectively, our in vivo and in vitro findings demonstrated, for the first time, that endogenous H2S directly inactivated IKKβ via sulfhydrating IKKβ at Cys179 to inhibit nuclear factor-κB (NF-κB) pathway activation and thereby control PAEC inflammation in PAH.


2021 ◽  
Vol 19 ◽  
pp. 205873922110623
Author(s):  
Hisatake Mori ◽  
Muhammad Aminul Huq ◽  
Md. Monirul Islam ◽  
Naoshi Takeyama

Introduction: Acute respiratory response syndrome (ARDS) leads to increased permeability of the endothelial-epithelial barrier, which in turn promotes edema formation and hypoxemic respiratory failure. Although activated neutrophils are thought to play a significant role in mediating ARDS, at present the contribution of neutrophil extracellular traps (NETs) to lung endothelial barrier function is unclear. Methods: To clarify their role, we co-cultured in vitro NETs induced by phorbol myristate acetate (PMA)–activated neutrophils with lung endothelial cell monolayers and examined the barrier function of lung endothelial cells by immunofluorescence microscopy and albumin permeability in a double-chamber culture method. Results: Co-culture with stimulated neutrophils increased the albumin permeability of the human pulmonary artery endothelial cell (HPAEC) monolayer and altered cytoskeleton F-actin and vascular endothelial-cadherin in cell-cell junctions. Hyperpermeability to albumin and histological alterations were prevented by inhibition of NET formation with peptidyl arginine deiminase inhibitor or a neutrophil elastase inhibitor and were also prevented by increased degradation of NET structure with DNase. Conclusion: This in vitro experiment shows that altered HPAEC barrier function and increased albumin permeability are caused by the direct effect of PMA-induced NETs and their components. NET formation may be involved in the increased vascular permeability of the lung, which is a common feature in ARDS of various etiologies. These insights may help generate novel approaches for medical interventions.


Sign in / Sign up

Export Citation Format

Share Document