Endogenous hydrogen sulfide sulfhydrates IKKβ at cysteine 179 to control pulmonary artery endothelial cell inflammation

2019 ◽  
Vol 133 (20) ◽  
pp. 2045-2059 ◽  
Author(s):  
Da Zhang ◽  
Xiuli Wang ◽  
Siyao Chen ◽  
Selena Chen ◽  
Wen Yu ◽  
...  

Abstract Background: Pulmonary artery endothelial cell (PAEC) inflammation is a critical event in the development of pulmonary arterial hypertension (PAH). However, the pathogenesis of PAEC inflammation remains unclear. Methods: Purified recombinant human inhibitor of κB kinase subunit β (IKKβ) protein, human PAECs and monocrotaline-induced pulmonary hypertensive rats were employed in the study. Site-directed mutagenesis, gene knockdown or overexpression were conducted to manipulate the expression or activity of a target protein. Results: We showed that hydrogen sulfide (H2S) inhibited IKKβ activation in the cell model of human PAEC inflammation induced by monocrotaline pyrrole-stimulation or knockdown of cystathionine γ-lyase (CSE), an H2S generating enzyme. Mechanistically, H2S was proved to inhibit IKKβ activity directly via sulfhydrating IKKβ at cysteinyl residue 179 (C179) in purified recombinant IKKβ protein in vitro, whereas thiol reductant dithiothreitol (DTT) reversed H2S-induced IKKβ inactivation. Furthermore, to demonstrate the significance of IKKβ sulfhydration by H2S in the development of PAEC inflammation, we mutated C179 to serine (C179S) in IKKβ. In purified IKKβ protein, C179S mutation of IKKβ abolished H2S-induced IKKβ sulfhydration and the subsequent IKKβ inactivation. In human PAECs, C179S mutation of IKKβ blocked H2S-inhibited IKKβ activation and PAEC inflammatory response. In pulmonary hypertensive rats, C179S mutation of IKKβ abolished the inhibitory effect of H2S on IKKβ activation and pulmonary vascular inflammation and remodeling. Conclusion: Collectively, our in vivo and in vitro findings demonstrated, for the first time, that endogenous H2S directly inactivated IKKβ via sulfhydrating IKKβ at Cys179 to inhibit nuclear factor-κB (NF-κB) pathway activation and thereby control PAEC inflammation in PAH.

2011 ◽  
Vol 301 (6) ◽  
pp. L860-L871 ◽  
Author(s):  
Paul J. Rozance ◽  
Gregory J. Seedorf ◽  
Alicia Brown ◽  
Gates Roe ◽  
Meghan C. O'Meara ◽  
...  

Intrauterine growth restriction (IUGR) increases the risk for bronchopulmonary dysplasia (BPD). Abnormal lung structure has been noted in animal models of IUGR, but whether IUGR adversely impacts fetal pulmonary vascular development and pulmonary artery endothelial cell (PAEC) function is unknown. We hypothesized that IUGR would decrease fetal pulmonary alveolarization, vascular growth, and in vitro PAEC function. Studies were performed in an established model of severe placental insufficiency and IUGR induced by exposing pregnant sheep to elevated temperatures. Alveolarization, quantified by radial alveolar counts, was decreased 20% ( P < 0.005) in IUGR fetuses. Pulmonary vessel density was decreased 44% ( P < 0.01) in IUGR fetuses. In vitro, insulin increased control PAEC migration, tube formation, and nitric oxide (NO) production. This response was absent in IUGR PAECs. VEGFA stimulated tube formation, and NO production also was absent. In control PAECs, insulin increased cell growth by 68% ( P < 0.0001). Cell growth was reduced in IUGR PAECs by 29% at baseline ( P < 0.01), and the response to insulin was attenuated ( P < 0.005). Despite increased basal and insulin-stimulated Akt phosphorylation in IUGR PAECs, endothelial NO synthase (eNOS) protein expression as well as basal and insulin-stimulated eNOS phosphorylation were decreased in IUGR PAECs. Both VEGFA and VEGFR2 also were decreased in IUGR PAECs. We conclude that fetuses with IUGR are characterized by decreased alveolar and vascular growth and PAEC dysfunction in vitro. This may contribute to the increased risk for adverse respiratory outcomes and BPD in infants with IUGR.


2020 ◽  
Vol 19 (4) ◽  
pp. 789-796
Author(s):  
Moon Jain ◽  
Hina Iqbal ◽  
Pankaj Yadav ◽  
Himalaya Singh ◽  
Debabrata Chanda ◽  
...  

Purpose: To determine the effects of lysosomal inhibition of autophagy by chloroquine (CHQ) onhypertension-associated changes in the endothelial functions. Method: Angiotensin II (Ang II)-treated human endothelial cell line EA.hy926 and renovascularhypertensive rats were subjected to CHQ treatment (in vitro: 0.5, 1, and 2.5 μM; in vivo: 50 mg/kg/dayfor three weeks). Changes in the protein expressions of LC3b II (autophagosome formation marker) andp62 (autophagy flux marker) were assessed using immunoblotting. Cell migration assay, tubuleformation assay (in vitro), and organ bath studies (in vivo) were performed to evaluate the endothelialfunctions. Hemodynamic parameters were measured as well. Results: A higher expression of LC3b II and a reduced expression of p62 observed in the Ang II-treatedendothelial cells, as well as in the aorta of the hypertensive rats, indicated enhanced autophagy.Treatment with CHQ resulted in reduced autophagy flux (in vitro as well as in vivo) and suppressed AngII-induced endothelial cell migration and angiogenesis (in vitro). The treatment with CHQ was alsoobserved to prevent increase in blood pressure in hypertensive rats and preserved acetylcholineinducedrelaxation in phenylephrine-contracted aorta from the hypertensive rats. In addition, chloroquineattenuated Ang II-induced contractions in the aorta of normotensive as well as hypertensive rats. Conclusion: These observations indicated that CHQ lowers the blood pressure and preserves thevascular endothelial function during hypertension. Keywords: Angiotensin II, Autophagy, Chloroquine, Endothelial function, Hypertension, Vasculardysfunction


Pharmaceutics ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 587 ◽  
Author(s):  
Ina Puscas ◽  
Florian Bernard-Patrzynski ◽  
Martin Jutras ◽  
Marc-André Lécuyer ◽  
Lyne Bourbonnière ◽  
...  

Since most preclinical drug permeability assays across the blood-brain barrier (BBB) are still evaluated in rodents, we compared an in vitro mouse primary endothelial cell model to the mouse b.End3 and the acellular parallel artificial membrane permeability assay (PAMPA) models for drug screening purposes. The mRNA expression of key feature membrane proteins of primary and bEnd.3 mouse brain endothelial cells were compared. Transwell® monolayer models were further characterized in terms of tightness and integrity. The in vitro in vivo correlation (IVIVC) was obtained by the correlation of the in vitro permeability data with log BB values obtained in mice for seven drugs. The mouse primary model showed higher monolayer integrity and levels of mRNA expression of BBB tight junction (TJ) proteins and membrane transporters (MBRT), especially for the efflux transporter Pgp. The IVIVC and drug ranking underlined the superiority of the primary model (r2 = 0.765) when compared to the PAMPA-BBB (r2 = 0.391) and bEnd.3 cell line (r2 = 0.019) models. The primary monolayer mouse model came out as a simple and reliable candidate for the prediction of drug permeability across the BBB. This model encompasses a rapid set-up, a fair reproduction of BBB tissue characteristics, and an accurate drug screening.


Antioxidants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 843
Author(s):  
Bo Kyung Lee ◽  
Soo-Wang Hyun ◽  
Yi-Sook Jung

Yuzu and its main component, hesperidin (HSP), have several health benefits owing to their anti-inflammatory and antioxidant properties. We examined the effects of yuzu and HSP on blood–brain barrier (BBB) dysfunction during ischemia/hypoxia in an in vivo animal model and an in vitro BBB endothelial cell model, and also investigated the underlying mechanisms. In an in vitro BBB endothelial cell model, BBB permeability was determined by measurement of Evans blue extravasation in vivo and in vitro. The expression of tight junction proteins, such as claudin-5 and zonula occludens-1 (ZO-1), was detected by immunochemistry and western blotting, and the reactive oxygen species (ROS) level was measured by 2′7′-dichlorofluorescein diacetate intensity. Yuzu and HSP significantly ameliorated the increase in BBB permeability and the disruption of claudin-5 and ZO-1 in both in vivo and in vitro models. In bEnd.3 cells, yuzu and HSP were shown to inhibit the disruption of claudin-5 and ZO-1 during hypoxia, and the protective effects of yuzu and HSP on claudin-5 degradation seemed to be mediated by Forkhead box O 3a (FoxO3a) and matrix metalloproteinase (MMP)-3/9. In addition, well-known antioxidants, trolox and N-acetyl cysteine, significantly attenuated the BBB permeability increase, disruption of claudin-5 and ZO-1, and FoxO3a activation during hypoxia, suggesting that ROS are important mediators of BBB dysfunction during hypoxia. Collectively, these results indicate that yuzu and HSP protect the BBB against dysfunction via maintaining integrity of claudin-5 and ZO-1, and these effects of yuzu and HSP appear to be a facet of their antioxidant properties. Our findings may contribute to therapeutic strategies for BBB-associated neurodegenerative diseases.


2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Afshin Salehi ◽  
Mounica R Paturu ◽  
Bhuvic Patel ◽  
Matthew D Cain ◽  
Tatenda Mahlokozera ◽  
...  

Abstract Background The blood–brain and blood–tumor barriers (BBB and BTB), which restrict the entry of most drugs into the brain and tumor, respectively, are a significant challenge in the treatment of glioblastoma. Laser interstitial thermal therapy (LITT) is a minimally invasive surgical technique increasingly used clinically for tumor cell ablation. Recent evidence suggests that LITT might locally disrupt BBB integrity, creating a potential therapeutic window of opportunity to deliver otherwise brain-impermeant agents. Methods We established a LITT mouse model to test if laser therapy can increase BBB/BTB permeability in vivo. Mice underwent orthotopic glioblastoma tumor implantation followed by LITT in combination with BBB tracers or the anticancer drug doxorubicin. BBB/BTB permeability was measured using fluorimetry, microscopy, and immunofluorescence. An in vitro endothelial cell model was also used to corroborate findings. Results LITT substantially disrupted the BBB and BTB locally, with increased permeability up to 30 days after the intervention. Remarkably, molecules as large as human immunoglobulin extravasated through blood vessels and permeated laser-treated brain tissue and tumors. Mechanistically, LITT decreased tight junction integrity and increased brain endothelial cell transcytosis. Treatment of mice bearing glioblastoma tumors with LITT and adjuvant doxorubicin, which is typically brain-impermeant, significantly increased animal survival. Conclusions Together, these results suggest that LITT can locally disrupt the BBB and BTB, enabling the targeted delivery of systemic therapies, including, potentially, antibody-based agents.


2021 ◽  
Vol 42 (Supplement_1) ◽  
Author(s):  
A S Mahomed ◽  
A Burke-Gaffney ◽  
Q Toe ◽  
J Naser ◽  
G J Quinlan ◽  
...  

Abstract Background Pulmonary arterial hypertension (PAH) is a complex pathology characterized by obliterative vascular remodeling that leads to right heart failure and death. Predisposition to PAH is associated with mutations in the BMPR2 gene in approximately 70–80% of familial cases and around 30% for that of sporadic PAH. The study of the pathogenetic basis of PAH is often performed in static endothelial cultures. Such two-dimensional, isolated cell microenvironments fail to consider the heterogeneity in mechanical stress acting on endothelial cells in various regions of the pulmonary vascular tree. In the remodeled pulmonary vasculature, low and oscillatory shear stress is observed in the proximal pulmonary artery with high shear stress in distal pre-capillary pulmonary arterioles. Therefore, the impact of varied shear profiles (including both laminar and oscillatory flow) on pulmonary artery endothelial cell (and that of BMPR2-deplete) gene expression of common vasoactive (EDN1, ENOS), proinflammatory (IL6, IL8) and angiogenic mediators (ANG2, VEGFA), are poorly described. Purpose To evaluate the effects of shear stress magnitude, including unidirectional and oscillatory flow on BMPR2-knockdown human pulmonary artery endothelial cell (HPAEC) gene expression of EDN1, ENOS, IL6, IL8, ANG2 and VEGFA. Methods HPAECs were transfected with siRNA directed against BMPR2 (siB2) or with a non-targeting control (siCon). Cells were exposed to 10 hours of laminar or oscillatory flow (1Hz; 1.5 dyn/cm2, 15 dyn/cm2 or 90 dyn/cm2) using a parallel-plate fluid flow chamber system. Measurement of mRNA expression was performed using qPCR. Results Shear stress intensity and flow type (unidirectional and oscillatory) mediated diverse effects on HPAEC gene expression across the markers studied. Changes in gene expression were calculated relative to that of static siCon-transfected HPAECs and in such a manner are summarized as fold changes in the table below. Asterisks are shown where significant fold differences are reported. *P≤0.05, **P≤0.01, ***P≤0.001, ****P≤0.0001. aP≤0.05, bP≤0.05, cP≤0.05, denote comparisons between groups. Of note, no significant differences in gene expression were observed between static siCon and static siB2. Conclusions For the markers studied, different magnitudes of shear stress and flow profiles (together with BMPR2 loss) exhibit varied patterns of gene expression in the pulmonary vascular endothelium. As such, this illustrates the need for wider study of in vitro endothelial-shear stress interactions in understanding mechanisms of remodeling in PAH. FUNDunding Acknowledgement Type of funding sources: None. Table 1


1988 ◽  
Vol 08 (02) ◽  
pp. 90-99 ◽  
Author(s):  
H. Schröder ◽  
K. Schrör

ZusammenfassungOrganische Nitrate unterschiedlicher chemischer Struktur sowie Nitroprussidnatrium und Molsidomin (bzw. ihre biologisch aktiven Metaboliten) können die (primäre) Aggregation und Sekretion von Humanthrombozyten in vitro und ex vivo hemmen. Eine solche Wirkung wird für Molsidomin (SIN-1) und Nitroprussidnatrium in vitro in Konzentrationen beobachtet, die in der gleichen Größenordnung liegen wie die vasodilatierenden Effekte der Substanzen. Dagegen sind für eine direkte Antiplättchenwirkung organischer Nitrate (Glyzeryltrinitrat, Isosorbiddinitr at, Isosorbidmononitrate, Teopranitol) in vitro Konzentrationen erforderlich, die ca. 100- bis 1000fach höher sind als die Plasmaspiegel der Substanzen nach therapeutischer Dosierung bzw. die Konzentrationen, die isolierte Gefäßstreifen relaxieren. Als gemeinsamer Wirkungsmechanismus der direkten thrombozy-tenfunktionshemmenden und gefäßerweiternden Wirkung all dieser Substanzen kann heute eine Stickoxid-(NO)-vermittelte Stimulation der cGMP-Bildung angenommen werden, das aus organischen Nitraten als »Pro-drug« entsteht. Die Freisetzung von NO, eines »endothelial cell-derived relaxing factors« (EDRF) aus Nitroprussidnatrium und SIN-1 erfolgt spontan. Dagegen erfordert die Freisetzung von NO aus organischen Nitraten einen enzymatischen Stoffwechselweg, der in isolierten Thrombozyten nicht vorhanden ist. Eine Antiplättchenwirkung organischer Nitrate in vivo bzw. ex vivo wird daher über die Stimulation eines endothelialen, thrombozyteninhibitorischen Faktors erklärt. Hierbei sind Prostazyklin sowie ein bisher unbekannter Endothel-zellfaktor neben einer synergistischen Wirkung organischer Nitrate mit endogenem Prostazyklin in Diskussion. Eine thrombozytenfunktionshemmen-de Wirkung organischer Nitrate könnte in Kombination mit ihren hämody-namischen Effekten auch für die an-tianginöse Wirkung in der Klinik bedeutsam sein, insbesondere zur Verhinderung vasospastischer Zustände bei der instabilen Angina pectoris.


Sign in / Sign up

Export Citation Format

Share Document