scholarly journals Genetic Ablation of Miro1 Leads to Mitochondrial Dysfunction and Lung Inflammation by Cigarette Smoke

Author(s):  
S. Sharma ◽  
I.K. Sundar ◽  
K. Maremanda ◽  
Q. Wang ◽  
G. Kaur ◽  
...  
2008 ◽  
Vol 172 (5) ◽  
pp. 1222-1237 ◽  
Author(s):  
Hongwei Yao ◽  
Indika Edirisinghe ◽  
Se-Ran Yang ◽  
Saravanan Rajendrasozhan ◽  
Aruna Kode ◽  
...  

Author(s):  
Shikha Sharma ◽  
Qixin Wang ◽  
Thivanka Muthumalage ◽  
Irfan Rahman

Cigarette smoke (CS) exposure results in lung damage and inflammation through mitochondrial dysfunction. Mitochondria quality control is sustained by Miro1 (Rhot1), a calcium-binding membrane-anchored GTPase by its interaction with PINK1/Parkin during mitophagy. However, the exact mechanism that operates this interaction of mitophagy machinery in Miro1 degradation and CS-induced mitochondrial dysfunction that results in lung inflammation remains unclear. We hypothesized that mitochondrial Miro1 plays an important role in regulating mitophagy machinery and resulting lung inflammation by CS in mouse lung. We showed a role of Miro1 in CS-induced mitochondrial dysfunction and quality control mechanisms. The Rhot1Fl/Fl (WT) and lung epithelial cell-specific Rhot1 KO were exposed to mainstream CS for 3 days (acute) and 4 months (chronic). The cellular infiltration, cytokines, and lung histopathology were studied for the inflammatory response in the lungs. Acute CS exposure showed a notable increase in the total inflammatory cells, macrophages, and neutrophils associated with inflammatory mediators and Miro1 associated mitochondrial quality control proteins Parkin and OPA1. Chronic exposure showed an increase infiltration of total inflammatory cells and neutrophils versus air controls. Histopathological changes, such as pulmonary macrophages and neutrophils were increased in CS exposed mice. The epithelial Miro1 ablation led to augmentation of inflammatory cell infiltration with alteration in the levels of pro-inflammatory cytokines and histopathological changes. Thus, CS induces disruption of mitochondrial quality control mechanisms, and Rhot1/Miro1 mediates the process of CS-induced mitochondrial dysfunction ensuing lung inflammatory responses.


2011 ◽  
Vol 286 (50) ◽  
pp. 43214-43228 ◽  
Author(s):  
Angela Rico de Souza ◽  
Michela Zago ◽  
Stephen J. Pollock ◽  
Patricia J. Sime ◽  
Richard P. Phipps ◽  
...  

Author(s):  
Shikha Sharma ◽  
Qixin Wang ◽  
Thivanka Muthumalage ◽  
Irfan Rahman

Cigarette smoke (CS) exposure results in lung damage and inflammation through mitochondrial dysfunction. Mitochondria quality control is sustained by Miro1 (Rhot1), a calcium-binding membrane-anchored GTPase by its interaction with PINK1/Parkin during mitophagy. However, the exact mechanism that operates this interaction of mitophagy machinery in Miro1 degradation and CS-induced mitochondrial dysfunction that results in lung inflammation remains unclear. We hypothesized that mitochondrial Miro1 plays an important role in regulating mitophagy machinery and resulting lung inflammation by CS in mouse lung. We showed a role of Miro1 in CS-induced mitochondrial dysfunction and quality control mechanisms. The Rhot1Fl/Fl (WT) and lung epithelial cell-specific Rhot1 KO were exposed to mainstream CS for 3 days (acute) and 4 months (chronic). The cellular infiltration, cytokines, and lung histopathology were studied for the inflammatory response in the lungs. Acute CS exposure showed a notable increase in the total inflammatory cells, macrophages, and neutrophils associated with inflammatory mediators and Miro1 associated mitochondrial quality control proteins Parkin and OPA1. Chronic exposure showed an increase infiltration of total inflammatory cells and neutrophils versus air controls. Histopathological changes, such as pulmonary macrophages and neutrophils were increased in CS exposed mice. The epithelial Miro1 ablation led to augmentation of inflammatory cell infiltration with alteration in the levels of pro-inflammatory cytokines and histopathological changes. Thus, CS induces disruption of mitochondrial quality control mechanisms, and Rhot1/Miro1 mediates the process of CS-induced mitochondrial dysfunction ensuing lung inflammatory responses.


2021 ◽  
pp. 174467
Author(s):  
Siddhi Jain ◽  
Sneha Durugkar ◽  
Pritam Saha ◽  
Sharad B. Gokhale ◽  
V.G.M. Naidu ◽  
...  

2016 ◽  
Vol 310 (6) ◽  
pp. L496-L506 ◽  
Author(s):  
Nivedita Tiwari ◽  
Amarnath S. Marudamuthu ◽  
Yoshikazu Tsukasaki ◽  
Mitsuo Ikebe ◽  
Jian Fu ◽  
...  

We previously demonstrated that tumor suppressor protein p53 augments plasminogen activator inhibitor-1 (PAI-1) expression in alveolar epithelial cells (AECs) during chronic cigarette smoke (CS) exposure-induced lung injury. Chronic lung inflammation with elevated p53 and PAI-1 expression in AECs and increased susceptibility to and exacerbation of respiratory infections are all associated with chronic obstructive pulmonary disease (COPD). We recently demonstrated that preventing p53 from binding to the endogenous PAI-1 mRNA in AECs by either suppressing p53 expression or blockading p53 interactions with the PAI-1 mRNA mitigates apoptosis and lung injury. Within this context, we now show increased expression of the C-X-C chemokines (CXCL1 and CXCL2) and their receptor CXCR2, and the intercellular cellular adhesion molecule-1 (ICAM-1), in the lung tissues of patients with COPD. We also found a similar increase in lung tissues and AECs from wild-type (WT) mice exposed to passive CS for 20 wk and in primary AECs treated with CS extract in vitro. Interestingly, passive CS exposure of mice lacking either p53 or PAI-1 expression resisted an increase in CXCL1, CXCL2, CXCR2, and ICAM-1. Furthermore, inhibition of p53-mediated induction of PAI-1 expression by treatment of WT mice exposed to passive CS with caveolin-1 scaffolding domain peptide reduced CXCL1, CXCL2, and CXCR2 levels and lung inflammation. Our study reveals that p53-mediated induction of PAI-1 expression due to chronic CS exposure exacerbates lung inflammation through elaboration of CXCL1, CXCL2, and CXCR2. We further provide evidence that targeting this pathway mitigates lung injury associated with chronic CS exposure.


2011 ◽  
Vol 10 (5) ◽  
pp. 7290.2011.00010 ◽  
Author(s):  
Sandra Pérez-Rial ◽  
Laura del Puerto-Nevado ◽  
Nicolás González-Mangado ◽  
Germán Peces-Barba

Sign in / Sign up

Export Citation Format

Share Document