scholarly journals Polulichloris henanensis gen. et sp. nov. (Trebouxiophyceae, Chlorophyta), a novel subaerial coccoid green alga

Phytotaxa ◽  
2015 ◽  
Vol 218 (2) ◽  
pp. 137 ◽  
Author(s):  
Huiyin Song ◽  
Qi Zhang ◽  
Guoxiang Liu ◽  
Zhengyu Hu

Coccoid green algae are abundant in subaerial habitats, but they are largely unexplored because of their morphological uniformity. Several new genus-level lineages have recently been described on the basis of molecular data. In this study, a coccoid green alga was isolated from surface soil in Zhoukou, Henan Province, China, and the cultured cells were described using light and electron microscopy. The ellipsoidal cell had smooth cell wall and parietal chloroplast with a pyrenoid surrounded by a starch envelope. Reproduction occurred by formation of 2‒16 autospores. Molecular phylogenetic analyses based on the nuclear 18S rDNA gene and the chloroplast ribulose-bisphosphate carboxylase gene (rbcL) indicated that this coccoid green alga represents a new lineage of the Watanabea clade (Trebouxiophyceae, Chlorophyta). Here, we describe this organism as a new genus and species, Polulichloris henanensis, gen. et sp. nov.

Phytotaxa ◽  
2020 ◽  
Vol 451 (2) ◽  
pp. 132-144 ◽  
Author(s):  
FRANCISCO OMAR LÓPEZ-FUERTE ◽  
SILVIA ESTELA SALA ◽  
MARIA CONCEPCIÓN LORA-VILCHIS ◽  
GOPAL MURUGAN

Halamphora siqueirosii sp. nov. is a marine benthic diatom isolated as a monoclonal culture from a hypersaline evaporation pond at the Guerrero Negro Saltworks, Baja California Sur, Mexico. Analysis of the valve ultrastructure of this taxon using light and electron microscopy indicated that its uniseriate striae and the density of its dorsal striae are useful characteristics for discriminating H. siqueirosii from other species with similar morphological patterns. The phylogenetic analyses performed with nuclear ribosomal genes, the small (18S) and large subunits (28S), and chloroplast gene ribulose-bisphosphate carboxylase (rbcL) fragments showed that H. siqueirosii is closely related to H. americana, H. calidilacuna and H. incelebrata. Morphological differences between this new species and similar ones are discussed.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Rui Wang ◽  
Yang Bai ◽  
Tao Hu ◽  
Dapeng Xu ◽  
Toshikazu Suzuki ◽  
...  

Abstract Background The taxonomic classification of the suborder Tintinnina Kofoid & Campbell, 1929, a species-rich group of planktonic ciliated protistans with a characteristic lorica, has long been ambiguous largely due to the lack of cytological and molecular data for most species. Tintinnopsis is the largest, most widespread, and most taxonomically complex genus within this group with about 170 species occurring in nearshore waters. Previous molecular phylogenetic studies have revealed that Tintinnopsis is polyphyletic. Results Here we document the live morphology, infraciliature, gene sequences, and habitat characteristics of three poorly known tintinnine species, viz. Tintinnopsis karajacensis Brandt, 1896, Tintinnopsis gracilis Kofoid & Campbell, 1929, and Tintinnopsis tocantinensis Kofoid & Campbell, 1929, isolated from the coastal waters of China. Based on a unique cytological feature (i.e., an elongated ciliary tuft with densely arranged kinetids) in the former two species, Antetintinnopsis gen. nov. is erected with Antetintinnopsis hemispiralis (Yin, 1956) comb. nov. (original combination: Tintinnopsis hemispiralis Yin, 1956) designated as the type species. Moreover, A. karajacensis (Brandt, 1896) comb. nov. (original combination: Tintinnopsis karajacensis Brandt, 1896) and A. gracilis (Kofoid & Campbell, 1929) comb. nov. (original combination: Tintinnopsis gracilis Kofoid & Campbell, 1929) are placed in a highly supported clade that branches separately from Tintinnopsis clades in phylogenetic trees based on SSU rDNA and LSU rDNA sequence data, thus supporting the establishment of the new genus. One other species is assigned to Antetintinnopsis gen. nov., namely A. subacuta (Jörgensen, 1899) comb. nov. (original combination Tintinnopsis subacuta Jörgensen, 1899). Conclusions The findings of the phylogenetic analyses support the assertion that cytological characters are taxonomically informative for tintinnines. This study also contributes to the broadening of our understanding of the tintinnine biodiversity and evolution.


2021 ◽  
Vol 307 (2) ◽  
Author(s):  
Pau Carnicero ◽  
Núria Garcia-Jacas ◽  
Llorenç Sáez ◽  
Theophanis Constantinidis ◽  
Mercè Galbany-Casals

AbstractThe eastern Mediterranean basin hosts a remarkably high plant diversity. Historical connections between currently isolated areas across the Aegean region and long-distance dispersal events have been invoked to explain current distribution patterns of species. According to most recent treatments, at least two Cymbalaria species occur in this area, Cymbalaria microcalyx and C. longipes. The former comprises several intraspecific taxa, treated at different ranks by different authors based on morphological data, evidencing the need of a taxonomic revision. Additionally, some populations of C. microcalyx show exclusive morphological characters that do not match any described taxon. Here, we aim to shed light on the systematics of eastern Mediterranean Cymbalaria and to propose a classification informed by various sources of evidence. We performed molecular phylogenetic analyses using ITS, 3’ETS, ndhF and rpl32-trnL sequences and estimated the ploidy level of some taxa performing relative genome size measures. Molecular data combined with morphology support the division of traditionally delimited C. microcalyx into C. acutiloba, C. microcalyx and C. minor, corresponding to well-delimited nrDNA lineages. Furthermore, we propose to combine C. microcalyx subsp. paradoxa at the species level. A group of specimens previously thought to belong to Cymbalaria microcalyx constitute a well-defined phylogenetic and morphological entity and are described here as a new species, Cymbalaria spetae. Cymbalaria longipes is non-monophyletic, but characterized by being glabrous and diploid, unlike other eastern species. The nrDNA data suggest at least two dispersals from the mainland to the Aegean Islands, potentially facilitated by marine regressions.


2008 ◽  
Vol 39 (2) ◽  
pp. 133-154 ◽  
Author(s):  
Alberto Sáez ◽  
Kaoru Maeto ◽  
Alejandro Zaldivar-Riverón ◽  
Sergey Belokobylskij

AbstractThe taxonomy of the Asian genera of the subfamily Betylobraconinae, a small and understudied group within the hymenopteran family Braconidae, is revised. A new genus exclusively from the Asian region, Asiabregma gen. nov., containing three species (A. ryukyuensis sp. nov. (type species, Japan and Malaya), A. makiharai sp. nov. (Japan) and A. sulaensis (van Achterberg), comb. nov. (Indonesia)) is described. One new species of Aulosaphobracon, A. striatus sp. nov. from Vietnam, and one of Facitorus, F. amamioshimus sp. nov. from Japan, are also described. Based on molecular phylogenetic analyses using COI mtDNA and 28S rRNA sequences, the three genera previously placed in the tribe Facitorini, Facitorus, Conobregma and Jannya, together with Asiabregma gen. nov., are transferred to the rogadine tribe Yeliconini.


Phytotaxa ◽  
2014 ◽  
Vol 175 (3) ◽  
pp. 133 ◽  
Author(s):  
Nian-Kai Zeng ◽  
Gang Wu ◽  
Yan-Chun Li ◽  
Zhi-Qun Liang ◽  
Zhu-Liang Yang

Crocinoboletus is described as a new genus of Boletaceae to accommodate Boletus rufoaureus and B. laetissimus, characterized by its brilliant orange color of basidiomata caused by the presence of unusual boletocrocin polyene pigments, bluish olivaceous staining of all parts when bruised, smooth basidiospores, and the pileipellis which has an interwoven trichoderm at the middle part of the pileus and a cutis at the margin of the pileus. Prior molecular phylogenetic analyses also confirmed the two taxa are not members of the genus Boletus s.s., but form a well-supported generic lineage within Boletaceae. Consequently a description, color photos of fresh basidiomata, line-drawings of microstructures and a comparison of Crocinoboletus with allied taxa are presented.


2012 ◽  
Vol 25 (6) ◽  
pp. 418 ◽  
Author(s):  
Roy E. Halling ◽  
Mitchell Nuhn ◽  
Todd Osmundson ◽  
Nigel Fechner ◽  
James M. Trappe ◽  
...  

Harrya is described as a new genus of Boletaceae to accommodate Boletus chromapes, a pink-capped bolete with a finely scabrous stipe adorned with pink scabers, a chrome yellow base and a reddish-brown spore deposit. Phylogenetic analyses of large-subunit rDNA and translation elongation factor 1α confirmed Harrya as a unique generic lineage with two species, one of which is newly described (H. atriceps). Some Chinese taxa were recently placed in a separate genus, Zangia, supported by both morphology and molecular data. Multiple accessions from Queensland, Australia, support the synonymy of at least three species in a separate Australian clade in the new genus, Australopilus. The truffle-like Royoungia is also supported as a separate lineage in this clade of boletes. Even though it lacks stipe characters, it possesses the deep, bright yellow to orange pigments in the peridium. Additional collections from Zambia and Thailand represent independent lineages of uncertain phylogenetic placement in the Chromapes complex, but sampling is insufficient for formal description of new species. Specimens from Java referable to Tylopilus pernanus appear to be a sister group of the Harrya lineage.


Botany ◽  
2016 ◽  
Vol 94 (10) ◽  
pp. 917-939 ◽  
Author(s):  
Amanda M. Savoie ◽  
Gary W. Saunders

Sequence data (COI-5P and rbcL) for North American members of the tribe Pterosiphonieae were compared with collections from around the world. Phylogenetic analyses resolved Pterosiphonia as polyphyletic and many species required transfer to other genera. In our analyses Pterosiphonia sensu stricto included only the type species P. cloiophylla (C. Agardh) Falkenberg and P. complanata (Clemente) Falkenberg, as well as the South African species P. stegengae sp. nov. A new genus, Xiphosiphonia gen. nov., was described for X. ardreana (Maggs & Hommersand) comb. nov., X. pennata (C. Agardh) comb. nov., and X. pinnulata (Kützing) comb. nov. Some Asian, European and North American species previously attributed to Pterosiphonia were transferred to Symphyocladia including S. baileyi (Harvey) comb. nov., S. dendroidea (Montagne) comb. nov., S. plumosa nom. nov. (for P. gracilis Kylin), and S. tanakae (S. Uwai & M. Masuda) comb. nov. We also described two new North American species, Symphyocladia brevicaulis sp. nov. and S. rosea sp. nov. Other species formed a well-supported clade for which the genus name Polyostea Ruprecht was resurrected. Included in Polyostea were P. arctica (J. Agardh) comb. nov., P. bipinnata (Postels & Ruprecht) Ruprecht, P. hamata (E.S. Sinova) comb. nov., and P. robusta (N.L. Gardner) comb. nov.


2021 ◽  
Vol 99 (2) ◽  
pp. 398-412
Author(s):  
Marcelo R. Pace ◽  
Brenda Hernández-Hernández ◽  
Esteban M. Martínez Salas ◽  
Lúcia G. Lohmann ◽  
N. Ivalu Cacho

Background: Astianthus is a monospecific arborescent genus of Bignoniaceae that occur in the Pacific Coast of central Mexico and northern Central America, where it grows in dense populations along riversides. Its phylogenetic placement has remained controversial since Astianthus has unusual morphological characters such as a four-loculed ovary, and simple, pulvinate, verticillate leaves. Methods: Here we used three plastid markers ndhF, rbcL, and trnL-F, wood, and bark anatomical data to investigate the phylogenetic placement of Astianthus and assign it to one of Bignoniaceae’s main clades. Results: Our molecular phylogenetic analyses indicated that Astianthus belongs in tribe Tecomeae s.s., where other charismatic Neotropical Bignoniaceae genera such as Campsis and Tecoma are currently placed. Wood and bark anatomy support this placement, as Astianthus reunites a unique combination of features only known from members of Tecomeae s.s., such as storied axial parenchyma, the co-occurrence of homo- and heterocellular rays, septate fibers, and scattered phloem fibers in the bark. Conclusions: The placement of Astianthus within Tecomeae s.s. provides further support to previous proposals for the Neotropical origin of this Pantropical tribe.


2021 ◽  
Vol 46 (1) ◽  
pp. 211-217
Author(s):  
Denise Monte Braz ◽  
Thomas F. Daniel ◽  
Carrie Kiel ◽  
Anna Gao ◽  
Sagrika Jawadi ◽  
...  

Abstract—A species previously treated in Staurogyne (S. nitida) is elevated to the category of a new genus of Acanthaceae, subfamily Nelsonioideae, based on morphological and molecular data. The sole species, Aymoreana nitida, occurs in the Atlantic Forest of eastern Brazil, from southern Bahia to northern Espírito Santo. Aymoreana differs from other genera of Nelsonioideae by the combination of the calyx with subequal segments, the slightly zygomorphic corolla, the four didynamous stamens, and the asymmetric gynoecium. Morphological information is accompanied by a molecular phylogenetic tree, ecological data, a preliminary conservation assessment, and illustrations.


2020 ◽  
Vol 89 (2) ◽  
pp. 188-209
Author(s):  
Yutaro Oku ◽  
Kenji Iwao ◽  
Bert W. Hoeksema ◽  
Naoko Dewa ◽  
Hiroyuki Tachikawa ◽  
...  

Recent molecular phylogenetic analyses of scleractinian corals have resulted in the discovery of cryptic lineages. To understand species diversity in corals, these lineages need to be taxonomically defined. In the present study, we report the discovery of a distinct lineage obscured by the traditional morphological variation of Fungia fungites. This taxon exists as two distinct morphs: attached and unattached. Molecular phylogenetic analyses using mitochondrial COI and nuclear ITS markers as well as morphological comparisons were performed to clarify their phylogenetic relationships and taxonomic positions. Molecular data revealed that F. fungites consists of two genetically distinct clades (A and B). Clade A is sister to a lineage including Danafungia scruposa and Halomitra pileus, while clade B formed an independent lineage genetically distant from these three species. The two morphs were also found to be included in both clades, although the attached morph was predominantly found in clade A. Morphologically, both clades were statistically different in density of septal dentation, septal number, and septal teeth shape. These results indicate that F. fungites as presently recognized is actually a species complex including at least two species. After checking type specimens, we conclude that specimens in clade A represent true F. fungites with two morphs (unattached and attached) and that all of those in clade B represent an unknown species and genus comprising an unattached morph with only one exception. These findings suggest that more unrecognized taxa with hitherto unnoticed morphological differences can be present among scleractinian corals.


Sign in / Sign up

Export Citation Format

Share Document