A molecular phylogenetic and DNA barcode assessment of the tribe Pterosiphonieae (Ceramiales, Rhodophyta) emphasizing the Northeast Pacific

Botany ◽  
2016 ◽  
Vol 94 (10) ◽  
pp. 917-939 ◽  
Author(s):  
Amanda M. Savoie ◽  
Gary W. Saunders

Sequence data (COI-5P and rbcL) for North American members of the tribe Pterosiphonieae were compared with collections from around the world. Phylogenetic analyses resolved Pterosiphonia as polyphyletic and many species required transfer to other genera. In our analyses Pterosiphonia sensu stricto included only the type species P. cloiophylla (C. Agardh) Falkenberg and P. complanata (Clemente) Falkenberg, as well as the South African species P. stegengae sp. nov. A new genus, Xiphosiphonia gen. nov., was described for X. ardreana (Maggs & Hommersand) comb. nov., X. pennata (C. Agardh) comb. nov., and X. pinnulata (Kützing) comb. nov. Some Asian, European and North American species previously attributed to Pterosiphonia were transferred to Symphyocladia including S. baileyi (Harvey) comb. nov., S. dendroidea (Montagne) comb. nov., S. plumosa nom. nov. (for P. gracilis Kylin), and S. tanakae (S. Uwai & M. Masuda) comb. nov. We also described two new North American species, Symphyocladia brevicaulis sp. nov. and S. rosea sp. nov. Other species formed a well-supported clade for which the genus name Polyostea Ruprecht was resurrected. Included in Polyostea were P. arctica (J. Agardh) comb. nov., P. bipinnata (Postels & Ruprecht) Ruprecht, P. hamata (E.S. Sinova) comb. nov., and P. robusta (N.L. Gardner) comb. nov.

2016 ◽  
Vol 48 (5) ◽  
pp. 387-421 ◽  
Author(s):  
Daphne F. STONE ◽  
James W. HINDS ◽  
Frances L. ANDERSON ◽  
James C. LENDEMER

AbstractA revision of the North American members of the Leptogium saturninum group (i.e. species with long lower-surface hairs, isidia, and usually smooth upper surface) is presented based on molecular phylogenetic analyses of mtSSU and nrITS sequence data, together with an extensive morphological study. Three species supported by both molecular and morphological characteristics are recognized: L. acadiense sp. nov. (distinguished by granular saturninum-type isidia, medulla composed of irregularly arranged or perpendicular hyphae), L. cookii sp. nov. (distinguished by cylindrical saturninum-type isidia) and L. hirsutum (distinguished by hirsutum-type isidia and medulla composed of loosely intertwined hyphae). One species supported by morphological characteristics, but for which no molecular data could be generated, is also recognized: L. compactum sp. nov. (distinguished by hirsutum-type isidia and medulla composed of tightly packed hyphae). Finally, L. saturninum (distinguished by granular saturninum-type isidia and medulla composed of perpendicular and parallel hyphae) is supported by morphological characteristics but molecular data from geographically diverse populations, including those near the type locality, indicate that the morphologically defined species is paraphyletic. Leptogium burnetiae is excluded from North American based on morphological study of the type. The species are described and illustrated in detail, and are distinguished morphologically by their isidium development, morphology of mature isidia, and pattern of hyphae in the medulla in transverse sections near lobe margins. A key to the members of the L. saturninum group and related species is also presented.


2021 ◽  
Vol 4 (3) ◽  
Author(s):  
GEORGY YU. LYUBARSKY ◽  
ERIK TIHELKA ◽  
CHEN-YANG CAI ◽  
EVGENY E. PERKOVSKY

Lophocateridae is a small family of cleroid beetles with more than one hundred species in 14 genera (Crowson, 1970; Kolibáč, 2013; Kolibáč & Peris, 2021). While the group was previously treated as a subfamily or tribe of Trogossitidae (e.g., Crowson, 1964; Barron, 1971; Ślipiński, 1992; Kolibáč, 2006), molecular phylogenetic analyses have not support the monophyly of Trogossitidae sensu lato (Bocak et al., 2014; Hunt et al., 2007; McKenna et al., 2015; Zhang et al., 2018; Kolibáč et al., 2021). In the most comprehensive analysis of Cleroidea performed to date by Gimmel et al. (2019), Lophocateridae was recovered as sister to Chaetosomatidae and Trogossitidae sensu stricto and elevated to family level. Extant Lophocateridae are cosmopolitan and display diverse modes of life, including fungivorous, herbivorous and predatory species, all of which are mostly associated with saproxylic habitats (Kolibáč, 2013).


2020 ◽  
Author(s):  
A. G. Cannizzaro ◽  
J. R. Gibson ◽  
T. R. Sawicki

The superfamily Bogidielloidea is one of the most wide-ranging hypogean amphipod taxa currently known, comprising over 130 species in 43 genera occurring on every continent except Antarctica. This large distribution among such cryptic organisms is curious, especially when combined with weak morphological characters uniting the superfamily. A unique new genus and species of bogidielloid amphipod, Simplexia longicrus, gen. et sp. nov., described from Terrell County, Texas, sheds light on the evolutionary relationships within this grouping. Molecular phylogenetic analyses of the order Amphipoda using two nuclear genes and one mitochondrial gene reveal that this species and the sympatric Parabogidiella americana form a clade removed from other sequenced members of Bogidiellidae sensu stricto, and, as such, the two species are placed in the newly erected Parabogidiellidae, fam. nov. Additional phylogenetic analyses of the cosmopolitan Bogidiellidae are recommended to further resolve its systematics.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Rui Wang ◽  
Yang Bai ◽  
Tao Hu ◽  
Dapeng Xu ◽  
Toshikazu Suzuki ◽  
...  

Abstract Background The taxonomic classification of the suborder Tintinnina Kofoid & Campbell, 1929, a species-rich group of planktonic ciliated protistans with a characteristic lorica, has long been ambiguous largely due to the lack of cytological and molecular data for most species. Tintinnopsis is the largest, most widespread, and most taxonomically complex genus within this group with about 170 species occurring in nearshore waters. Previous molecular phylogenetic studies have revealed that Tintinnopsis is polyphyletic. Results Here we document the live morphology, infraciliature, gene sequences, and habitat characteristics of three poorly known tintinnine species, viz. Tintinnopsis karajacensis Brandt, 1896, Tintinnopsis gracilis Kofoid & Campbell, 1929, and Tintinnopsis tocantinensis Kofoid & Campbell, 1929, isolated from the coastal waters of China. Based on a unique cytological feature (i.e., an elongated ciliary tuft with densely arranged kinetids) in the former two species, Antetintinnopsis gen. nov. is erected with Antetintinnopsis hemispiralis (Yin, 1956) comb. nov. (original combination: Tintinnopsis hemispiralis Yin, 1956) designated as the type species. Moreover, A. karajacensis (Brandt, 1896) comb. nov. (original combination: Tintinnopsis karajacensis Brandt, 1896) and A. gracilis (Kofoid & Campbell, 1929) comb. nov. (original combination: Tintinnopsis gracilis Kofoid & Campbell, 1929) are placed in a highly supported clade that branches separately from Tintinnopsis clades in phylogenetic trees based on SSU rDNA and LSU rDNA sequence data, thus supporting the establishment of the new genus. One other species is assigned to Antetintinnopsis gen. nov., namely A. subacuta (Jörgensen, 1899) comb. nov. (original combination Tintinnopsis subacuta Jörgensen, 1899). Conclusions The findings of the phylogenetic analyses support the assertion that cytological characters are taxonomically informative for tintinnines. This study also contributes to the broadening of our understanding of the tintinnine biodiversity and evolution.


2019 ◽  
Vol 44 (4) ◽  
pp. 930-942
Author(s):  
Geraldine A. Allen ◽  
Luc Brouillet ◽  
John C. Semple ◽  
Heidi J. Guest ◽  
Robert Underhill

Abstract—Doellingeria and Eucephalus form the earliest-diverging clade of the North American Astereae lineage. Phylogenetic analyses of both nuclear and plastid sequence data show that the Doellingeria-Eucephalus clade consists of two main subclades that differ from current circumscriptions of the two genera. Doellingeria is the sister group to E. elegans, and the Doellingeria + E. elegans subclade in turn is sister to the subclade containing all remaining species of Eucephalus. In the plastid phylogeny, the two subclades are deeply divergent, a pattern that is consistent with an ancient hybridization event involving ancestral species of the Doellingeria-Eucephalus clade and an ancestral taxon of a related North American or South American group. Divergence of the two Doellingeria-Eucephalus subclades may have occurred in association with northward migration from South American ancestors. We combine these two genera under the older of the two names, Doellingeria, and propose 12 new combinations (10 species and two varieties) for all species of Eucephalus.


2008 ◽  
Vol 39 (2) ◽  
pp. 133-154 ◽  
Author(s):  
Alberto Sáez ◽  
Kaoru Maeto ◽  
Alejandro Zaldivar-Riverón ◽  
Sergey Belokobylskij

AbstractThe taxonomy of the Asian genera of the subfamily Betylobraconinae, a small and understudied group within the hymenopteran family Braconidae, is revised. A new genus exclusively from the Asian region, Asiabregma gen. nov., containing three species (A. ryukyuensis sp. nov. (type species, Japan and Malaya), A. makiharai sp. nov. (Japan) and A. sulaensis (van Achterberg), comb. nov. (Indonesia)) is described. One new species of Aulosaphobracon, A. striatus sp. nov. from Vietnam, and one of Facitorus, F. amamioshimus sp. nov. from Japan, are also described. Based on molecular phylogenetic analyses using COI mtDNA and 28S rRNA sequences, the three genera previously placed in the tribe Facitorini, Facitorus, Conobregma and Jannya, together with Asiabregma gen. nov., are transferred to the rogadine tribe Yeliconini.


1991 ◽  
Vol 123 (3) ◽  
pp. 501-558 ◽  
Author(s):  
Ian M. Smith

AbstractMorphological, life history, and distributional data are presented for North American species of the subgenus Stygomomonia (sensu stricto) Szalay, 1943. Adults of the seven previously recognized species are redescribed, and deutonymphs of five of these species are described for the first time. Two species, S. (s.s.) neomexicana Cook and S. (s.s.) occidentalis Cook are substantially revised on the basis of an examination of the types and extensive series of newly collected specimens. Three new species are described, S. (s.s.) californiensis on the basis of deutonymphs and adults, and S. (s.s.) imamurai and S. (s.s.) cooki on the basis of adults. A new diagnosis of the subgenus is proposed and discussed, the relationships of the various species are discussed, and a key to deutonymphs and adults of North American species is presented. New distributional data are presented for all species, and dispersal patterns from Pleistocene refugia are discussed.


Phytotaxa ◽  
2014 ◽  
Vol 175 (3) ◽  
pp. 133 ◽  
Author(s):  
Nian-Kai Zeng ◽  
Gang Wu ◽  
Yan-Chun Li ◽  
Zhi-Qun Liang ◽  
Zhu-Liang Yang

Crocinoboletus is described as a new genus of Boletaceae to accommodate Boletus rufoaureus and B. laetissimus, characterized by its brilliant orange color of basidiomata caused by the presence of unusual boletocrocin polyene pigments, bluish olivaceous staining of all parts when bruised, smooth basidiospores, and the pileipellis which has an interwoven trichoderm at the middle part of the pileus and a cutis at the margin of the pileus. Prior molecular phylogenetic analyses also confirmed the two taxa are not members of the genus Boletus s.s., but form a well-supported generic lineage within Boletaceae. Consequently a description, color photos of fresh basidiomata, line-drawings of microstructures and a comparison of Crocinoboletus with allied taxa are presented.


Plant Disease ◽  
2003 ◽  
Vol 87 (11) ◽  
pp. 1329-1332 ◽  
Author(s):  
J. Roux ◽  
H. Myburg ◽  
B. D. Wingfield ◽  
M. J. Wingfield

Cryphonectria cubensis is an economically important pathogen of commercial Eucalyptus spp. Differences have been reported for disease symptoms associated with Cryphonectria canker in South Africa and other parts of the world, and recent DNA-based comparisons have confirmed that the fungus in South Africa is different from that in South America and Australasia. During a disease survey in the Republic of Congo, Cryphonectria canker was identified as an important disease on Eucalyptus grandis and E. urophylla. In this study, we compared Congolese and South African isolates of C. cubensis using DNA sequence data and pathogenicity under greenhouse conditions. The β-tubulin and internal transcribed spacer (ITS) region sequences show that C. cubensis in Congo is different from the fungus in South Africa and that Congolese isolates group most closely with South American isolates. Furthermore, pathogenicity tests showed that a South African isolate was more aggressive than two Congolese isolates. We conclude that two distinct Cryphonectria spp. occur in Africa and hypothesize that the fungus in the Congo probably was introduced into Africa from South America. Both fungi are important pathogens causing disease and death of economically important plantation trees. However, they apparently have different origins and must be treated separately in terms of disease management and quarantine considerations.


Mammalia ◽  
2019 ◽  
Vol 83 (2) ◽  
pp. 180-189 ◽  
Author(s):  
Adam W. Ferguson ◽  
Houssein R. Roble ◽  
Molly M. McDonough

AbstractThe molecular phylogeny of extant genets (Carnivora, Viverridae,Genetta) was generated using all species with the exception of the Ethiopian genetGenetta abyssinica. Herein, we provide the first molecular phylogenetic assessment ofG. abyssinicausing molecular sequence data from multiple mitochondrial genes generated from a recent record of this species from the Forêt du Day (the Day Forest) in Djibouti. This record represents the first verified museum specimen ofG. abyssinicacollected in over 60 years and the first specimen with a specific locality for the country of Djibouti. Multiple phylogenetic analyses revealed conflicting results as to the exact relationship ofG. abyssinicato otherGenettaspecies, providing statistical support for a sister relationship to all other extant genets for only a subset of mitochondrial analyses. Despite the inclusion of this species for the first time, phylogenetic relationships amongGenettaspecies remain unclear, with limited nodal support for many species. In addition to providing an alternative hypothesis of the phylogenetic relationships among extant genets, this recent record provides the first complete skeleton of this species to our knowledge and helps to shed light on the distribution and habitat use of this understudied African small carnivore.


Sign in / Sign up

Export Citation Format

Share Document