Cladistic analysis of the tribe Torneutini Thomson (Coleoptera: Cerambycidae: Cerambycinae: Trachyderoinia)

Zootaxa ◽  
2005 ◽  
Vol 1062 (1) ◽  
pp. 1 ◽  
Author(s):  
MARCELA LAURA MONNÉ ◽  
DILMA SOLANGE NAPP

A generic-level phylogenetic analysis of the tribe Torneutini Thomson, 1860 is presented based on 72 morphological characters for 39 terminal taxa of which, 31 are representatives of the Torneutini genera. The outgroup includes eight representatives from other tribes. A hypothesis of monophyly for supertribe Trachyderoinia Dupont, 1836 (sensu Fragoso, Monné and Seabra 1987) is presented for the first time. Torneutini, as currently recognized, was shown to be paraphyletic. In order to eliminate this condition, Bothriospilina Lane, 1950 is raised herein to tribe level. Torneutini, as herein defined, comprises the following genera in parenthetic notation: (Macellidiopygus (Psygmatocerus (Gigantotrichoderes (Spathopygus + Coccoderus) (Gnathopraxithea + Praxithea) (Torneutopsis (Torneucerus + Diploschema) (Torneutes (Dragomiris + Dragoneutes) (Thaumasus + Xenambyx)))))). The maintenance of Macellidiopygus in Torneutini needs further investigating. Bothriospilini Lane, 1950, new status, includes in parenthetic notation: ((Ranqueles + Scapanopygus) (Taygayba (Delemodacrys (Bothriospila + Timbaraba))) (Gnaphalodes (Knulliana + Chlorida)))). The position of Chrotoma is still no certain, and it is tentatively included in Bothriospilini. The results indicate that Bothriospilini is closely related to Trachyderini, Pyrestini and Basipterini. A phylogenetic classification of Trachyderoinia at tribe level, and of Torneutini and Bothriospilini at genus level, is proposed.

Zootaxa ◽  
2008 ◽  
Vol 1744 (1) ◽  
pp. 19 ◽  
Author(s):  
MARGARITA HERMOSO-SALAZAR ◽  
MARY WICKSTEN ◽  
JUAN J. MORRONE

A cladistic analysis of 22 species of Synalpheus, represented primarily by species of the Paulsoni species group from the American Pacific and selected species from the Gambarelloides, Neomeris, Brevicarpus, and Biunguiculatus species groups was undertaken, based on 51 morphological characters. The Paulsoni species group proved to be paraphyletic, because species of the Neomeris, Brevicarpus, and Biunguiculatus species groups nested within it. It is proposed herein that in order to achieve a more natural classification, only two groups should be maintained within Synalpheus: Gambarelloides and Paulsoni, the latter in its broadest sense, treating the remaining species groups as synonyms.


Zootaxa ◽  
2013 ◽  
Vol 3610 (1) ◽  
pp. 1-80 ◽  
Author(s):  
J. K. LOWRY ◽  
A. A. MYERS

The Amphipoda includes a large clade defined by the presence of a previously unrecognised synapomorphy, apical robust setae on the rami of uropods 1–2. We term this clade the Senticaudata subord. nov. (Latin: sentis = thorn). It includes almost all freshwater species as well as a number of marine benthic taxa, formerly part of the ‘Gammaridea’. The phylogeny of the senticaudates was determined by cladistic analysis of morphological characters and character states. Within the suborder Senticaudata there are six infraorders: Carangoliopsida, Talitrida, Hadziida, Corophiida, Bogidiellida and Gammarida. A classification is provided and all the senticaudate families are diagnosed. We introduce for the first time in amphipod classification, the level parvorder between infraorder and superfamily. Four new families are described: Kairosidae; Eriopisidae; Nuuanuidae and Kergueleniolidae.


Zootaxa ◽  
2009 ◽  
Vol 2284 (1) ◽  
pp. 1-29 ◽  
Author(s):  
CECILIA WAICHERT ◽  
CELSO O. AZEVEDO

Rhabdepyris (Epyrinae) is a cosmopolitan genus comprised of 132 species. No morphological synapomorphies are known for the genus and the genus is characterized by a combination of characters common to most Epyrini. Herein, we performed a cladistic analysis based on morphological characters to test the monophyly of Rhabdepyris. The three known subgenera of Rhabdepyris (Chlorepyris, Rhabdepyris s. str., and Trichotepyris) and other Epyrini (Anisepyris, Bakeriella, Calyozina, Epyris, Laelius, Trachepyris) were included in the ingroup. The cladistic analysis of 48 taxa (46 ingroup species and two outgroup species) and 81 structural characters yielded 72 cladograms under equal weights, and one under successive weighting. Rhabdepyris was found to be polyphyletic; the subgenus Trichotepyris was closely related to Anisepyris whereas Rhabdepyris str. s. was closely related to Laelius. The subgenus Chlorepyris is paraphyletic. Morphological characters are discussed in the light of the new phylogeny; novel characters are proposed and illustrated, and a new classification of Rhabdepyris and Epyrini is proposed. The following nomenclatural changes are proposed: Trichotepyris is synonymized under Anisepyris (syn. n.); Chlorepyris is recognized as a separated genus (stat. rev.); all 12 American species of the subgenus Rhabdepyris are transferred to Laelius; 22 species of Trichotepyris are transferred to Anisepyris; 58 species are transferred to Chlorepyris. A remaining total of 40 species are now recognized in Rhabdepyris. The holotype of Rhabdepyris, R. myrmecophilus Kieffer, the type species of Rhabdepyris, is redescribed.


Zootaxa ◽  
2021 ◽  
Vol 5074 (1) ◽  
pp. 1-66
Author(s):  
ANDRZEJ WOLSKI

Cylapini, as currently circumscribed, is a relatively small group of plant bugs currently comprising 17 genera and 65 species. Most representatives of the tribe are distributed in the New World (10 genera and 47 species) with other members occurring in the Afrotropical, Oriental, and Australian regions. They have primarily tropical and subtropical distributions with only a few members inhabiting temperate regions. This paper provides a taxonomic review of three of the New World Cylapini genera: Cylapinus Carvalho, 1986, Cylapoides Carvalho, 1952, and Peltidocylapus Poppius, 1909. Most species are diagnosed and redescribed. Eight new species are described as new: Cylapinus yasunagai sp. nov., Peltidocylapus calyciformis sp. nov., P. caudatus sp. nov., P. ecuadorensis sp. nov., P. pallidus sp. nov., P. parallelus sp. nov., P. simplex sp. nov., and P. spinosus sp. nov. Cylapus festinabundus Bergroth, 1922 is transferred to Peltidocylapus (comb. nov.). Illustrations of male genitalia, scanning electron micrographs of selected structures of certain species, and an identification key of the genera Cylapinus, Cylapoides and Peltidocylapus are provided. Female genitalia are described and illustrated for the first time for most genera of Cylapini. A cladistic analysis of the tribe based on 81 morphological characters is presented as a contribution to the understanding of the ingroup relationships of Cylapini and its relationships with other groups of Cylapinae. The analysis comprises 30 ingroup species and 15 outgroup species. Both equal- and implied weighting parsimony analyses were used in the phylogenetic reconstruction. This analysis was based solely on morphological characters because an insufficient number of specimens suitable for molecular studies were available for most taxa. The study confirmed a close affinity of the taxa currently included in Cylapini, but the tribe was rendered paraphyletic by inclusion of the tribe Vanniini. The grouping comprising both Cylapini + Vanniini and most of its subordinated clades received low nodal support. Both analyses recovered a decisively supported clade comprising the New World genera Amapacylapus, Cylapus, Peltidocylapus, and Valdasus which accommodate most of the Cylapini species, justifying the recognition of the Cylapus complex suggested by previous authors. The results presented here are discussed and compared with previous phylogenetic hypotheses based on different datasets.  


Zootaxa ◽  
2011 ◽  
Vol 2801 (1) ◽  
pp. 27 ◽  
Author(s):  
PAVEL G. NEMKOV ◽  
MICHAEL OHL

A cladistic analysis of the digger wasp tribe Bembicini based on morphological characters is presented. The underlying data matrix comprises 64 terminal taxa (coded on genus-level) and 54 morphological characters. The resulting strict consensus tree was used as the basis for a revised subtribal classification of the Bembicini. Based on a previously published classification, we herewith propose a number of changes. The subtribe Spheciina Nemkov and Ohl, subtrib. nov. (comprising Ammatomus A. Costa 1859, Kohlia Handlirsch 1895, Sphecius Dahlbom 1843, and Tanyoprymnus Cameron 1905) is removed from Handlirschiina Nemkov and Lelej 1996. The subtribe Stictiellina Bohart and Horning 1971, stat. resurr. (composed of Chilostictia Gillaspy 1983, Glenostictia Gillaspy in Gillaspy, Evans, and Lin 1962, Microstictia Gillaspy 1963, Steniolia Say 1837, Stictiella J. Parker 1917, and Xerostictia Gillaspy 1963) is separated from Bembicina Latreille 1802. The subtribe Argogorytina Nemkov and Lelej 1996 (Argogorytes Ashmead 1899, Neogorytes Bohart in Bohart and Menke 1976, Paraphilanthus Vardy 1995) is synonymized with Exeirina Dalla Torre 1897, syn. nov. Finally, the subtribe Trichogorytina Nemkov and Pulawski 2009 (genus Trichogorytes Rohwer 1912 only) is synonymized with Gorytina Lepeletier de Saint Fargeau 1845, syn. nov. An updated identification key to the subtribes of the Bembicini is provided.


Zootaxa ◽  
2020 ◽  
Vol 4886 (1) ◽  
pp. 1-77
Author(s):  
RICARDO ANTONIO GONÇALVES ◽  
ANTONIO DOMINGOS BRESCOVIT

A taxonomic revision and phylogenetic analysis of the spider genus Epicratinus Jocqué & Baert, 2005 is presented. The phylogenetic analysis is based on a data set including 16 Epicratinus species plus 9 outgroups representing by five related zodariid gen­era and one of them considered most basal as the root. These taxa were scored for 49 morphological characters. Parsimony was used as the op­timality criterion and a sensitivity analysis was performed using different character weighting concavities. Five unambiguous synapomorphies support the monophyly of Epicratinus. Some internal clades within the genus are well-supported and their relationships are discussed. Epicratinus includes 16 species, all with males and females. A species identification key and distribution maps are provided for all. New morphological data are also pre­sented for five previously described species. All 16 species occur only in the New World. The following species are transferred to Epicratinus: E. perfidus (Jocqué & Baert), comb. nov. from Tenedos; Epicratinus perfidus Jocqué & Baert comb. nov. and newly synonymized with E. santacruz Grismado & Izquierdo and this last species is treated as the junior synonym. Epicratinus petropolitanus (Mello-Leitão) has the male described for the first time. The following 11 species are newly described as new: E. zangief sp. nov.; E. pegasus sp. nov.; E. pikachu sp. nov.; E. stitch sp. nov.; E. ehonda sp. nov.; E. anakin sp. nov.; E. vader sp. nov.; E. omegarugal sp. nov.; E. zelda sp. nov.; E. dookan sp. nov. and E. mauru sp. nov., all from Brazil. 


2018 ◽  
Vol 49 (2) ◽  
pp. 103-129 ◽  
Author(s):  
Rogério Botion Lopes ◽  
Fernando Barbosa Noll

Zethus is the largest genus in Eumeninae, with over 250 species. Currently, it is divided in four subgenera: Z. (Zethus), Z. (Zethusculus), Z. (Zethoides) and Z. (Madecazethus). Z. (Zethoides), with 42 species, is subdivided in eight species groups, each considered a phylogenetic unit, that were created without any phylogenetic analysis. Eighteen species of Z. (Zethoides) corresponding to different groups were examined, altogether with terminals from distinct lineages of Zethus, Zethini and Eumenini, to perform a cladistics analysis to verify the proposed divisions. Zethus (Zethoides) and all of its species groups, except for the Z. biglumis group, were monophyletic. Zethus s.s. was paraphyletic in relation to Z. (Madecazethus), Z. (Zethoides) and Ctenochilus. Z. (Zethusculus) was also retrieved paraphyletic. Despite the subgeneric incongruences, the outgroups were too poorly represented to carry a taxonomic modification. Thus, the only alteration was the inclusion of the Z. clypearis group in the Z. biglumis group.


2016 ◽  
Vol 47 (1) ◽  
pp. 53-82 ◽  
Author(s):  
Werner P. Strümpher ◽  
Martin H. Villet ◽  
Catherine L. Sole ◽  
Clarke H. Scholtz

Extant genera and subgenera of the Trogidae (Coleoptera: Scarabaeoidea) are reviewed. Contemporary classifications of this family have been based exclusively on morphological characters. The first molecular phylogeny for the family recently provided strong support for the relationships between morphologically defined genera and subgenera. On the basis of morphological, molecular and biogeographical evidence, certain taxonomic changes to the genus-level classification of the family are now proposed. The family is confirmed as consisting of two subfamilies, Omorginae Nikolajev and Troginae MacLeay, the former with two genera,OmorgusErichson andPolynoncusBurmeister, and the latter with two genera,TroxFabricius andPhoberusMacLeaystat. rev.Phoberusis restored to generic rank to include all Afrotropical (including Madagascan endemic) species;Afromorgusis confirmed at subgeneric rank within the genusOmorgus; and the monotypic Madagascan genusMadagatroxsyn. n.is synonymised withPhoberus.The current synonymies ofPseudotroxRobinson (withTrox),ChesasBurmeister,LagopelusBurmeister andMegalotroxPreudhomme de Borre (all withOmorgus) are all accepted to avoid creating speculative synonyms before definitive phylogenetic evidence is available. New combinations resulting from restoringPhoberusto a monophyletic genus are listed in Appendix A.


2011 ◽  
Vol 80 (3) ◽  
pp. 191-199 ◽  
Author(s):  
David Baracchi ◽  
Leonardo Dapporto ◽  
Stefano Turillazzi

The phylogeny of the Stenogastrinae wasps is still under discussion and their systematic incomplete. In the present work we used geometric morphometrics, a technique based on a rigorous statistical assessment of shape, to compare the forewings of fifteen species of Stenogastrinae wasps belonging to four different genera to ascertain whether this approach may be used as a reliable method in the study of the taxonomy of the group. The results show that the wing vein junctions can be diagnostic for both genus and species identification. For the first time in this subfamily, we propose a phylogenetic classification of the species based on wing morphology that largely agrees with the cladistic data available at genus level and reflects the differences among species in terms of nesting material and architecture of their nest.


Zootaxa ◽  
2011 ◽  
Vol 2873 (1) ◽  
pp. 1 ◽  
Author(s):  
CHRISTER HANSSON

Cornugon gen. nov. (Hymenoptera: Eulophidae: Entedoninae) is described from the Neotropical region, including ten new species from Costa Rica, Ecuador, Honduras and Mexico: C. albicoxa, C. anais, C. bicornis, C. diabolos, C. diceros, C. gibberum, C. leios, C. petiolatum, C. reticulatum, and C. unicornis spp. nov. The monophyly of the genus is demonstrated through two putative morphological autapomorphies. One of the autapomorphies is in a recently discovered character system, wing interference colour patterns (WIPs). WIPs are used here for the first time at the generic level for the classification of insects. Cornugon is compared to Pediobius Walker with which it shares the most apomorphies.


Sign in / Sign up

Export Citation Format

Share Document