Phylogenetic position and relationships of mountain loaches (Teleostei: Balitoridae) of the Western Ghats as revealed by CO1 sequences

Zootaxa ◽  
2021 ◽  
Vol 4926 (1) ◽  
pp. 79-92 ◽  
Author(s):  
ARYA SIDHARTHAN ◽  
RAJEEV RAGHAVAN ◽  
V. K. ANOOP ◽  
ASHWINI KESKAR ◽  
NEELESH DAHANUKAR

The teleostean family Balitoridae comprises small-sized freshwater fishes adapted to swift-flowing torrential mountain streams in South and South-East Asia. Little is known about their molecular phylogenetics and evolutionary biogeography, and much of the scientific literature that references them is focused on morphological taxonomy. In this paper, we generate CO1 sequences for the endemic balitorid lineages of the Western Ghats (WG) Hotspot in India, particularly for the endemic genera, Bhavania, Ghatsa and Travancoria. Integration of these data into a phylogeny revealed that the endemic WG genera together form a well-supported monophyletic clade that shows, subject to our limited taxon sampling, a sister-group relationship to the Southeast Asian genus Pseudohomaloptera. Three WG endemic species of the genus Balitora, namely B. chipkali, B. jalpalli and B. laticauda, though morphologically distinct, have low genetic divergence and barcode gap, suggestive of recent speciation. Interestingly, a fourth WG endemic, B. mysorensis, formed a clade with two species of Balitora from Eastern-Himalaya and Indo-Burma. We also show that all available CO1 sequences assigned to WG endemic balitorid genera in GenBank are misidentifications, and provide diagnostic characters for the accurate identification of these taxa in the future. 

Zootaxa ◽  
2013 ◽  
Vol 3626 (1) ◽  
pp. 99-145 ◽  
Author(s):  
JAHNAVI JOSHI ◽  
GREGORY D. EDGECOMBE

Recent work on molecular phylogenetics of Scolopendridae from the Western Ghats, Peninsular India, has suggested the presence of six cryptic species of the otostigmine Digitipes Attems, 1930, together with three species described in previous taxonomic work by Jangi and Dass (1984). Digitipes is the correct generic attribution for a monophyletic group of Indian species, these being united with three species from tropical Africa (including the type) that share a distomedial process on the ultimate leg femur of males that is otherwise unknown in Otostigminae. Second maxillary characters previously used in the diagnosis of Digitipes are dismissed because Indian species do not possess the putatively diagnostic character states. Two new species from the Western Ghats that correspond to groupings identified based on monophyly, sequence diver-gence and coalescent analysis using molecular data are diagnosed based on distinct morphological characters. They are D. jangii and D. periyarensis n. spp. Three species named by Jangi and Dass (Digitipes barnabasi, D. coonoorensis and D. indicus) are revised based on new collections; D. indicus is a junior subjective synonym of Arthrorhabdus jonesii Ver-hoeff, 1938, the combination becoming Digitipes jonesii (Verhoeff, 1938) n. comb. The presence of Arthrorhabdus in In-dia is accordingly refuted. Three putative species delimited by molecular and ecological data remain cryptic from the perspective of diagnostic morphological characters and are presently retained in D. barnabasi, D. jangii and D. jonesii. A molecularly-delimited species that resolved as sister group to a well-supported clade of Indian Digitipes is identified as Otostigmus ruficeps Pocock, 1890, originally described from a single specimen and revised herein. One Indian species originally assigned to Digitipes, D. gravelyi, deviates from confidently-assigned Digitipes with respect to several charac-ters and is reassigned to Otostigmus, as O. gravelyi (Jangi and Dass, 1984) n. comb.


2003 ◽  
Vol 40 (4) ◽  
pp. 527-556 ◽  
Author(s):  
Michael deBraga

A morphological study of the postcranial skeleton of Procolophon trigoniceps from the Lower Triassic of South Africa and Antarctica is undertaken. Procolophon shares a sister-group relationship with the procolophonid Tichvinskia from the Lower Triassic of Russia and is a basal member of Procolophonidae. This clade also includes the enigmatic taxon Sclerosaurus, believed most recently to be a pareiasaur relative. Owenettids form a separate lineage from Procolophonidae and are predominantly restricted to the Permian of both South Africa and Madagascar. A phylogenetically based assessment is considered, in which specialized modern taxa (sand lizards) are compared to their nonfossorial sister clade, allowing for "key innovations" to be identified. A similar comparison between owenettids and procolophonids reveals a number of apparent "key innovations" within procolophonids that are suggestive of a burrowing lifestyle for Procolophon.


Zootaxa ◽  
2019 ◽  
Vol 4646 (2) ◽  
pp. 236-250 ◽  
Author(s):  
R. CHAITANYA ◽  
ISHAN AGARWAL ◽  
APARNA LAJMI ◽  
AKSHAY KHANDEKAR

A new rupicolous gecko from the Hemidactylus brookii complex is described from the forests and plateaus of Amboli, in the Western Ghats of Maharashtra. This medium sized (average adult SVL 56.2±5.0 to at least 62 mm), nocturnal species is superficially similar to other congeners from the ‘H. brookii’ clade, but can be distinguished from them in having 17 or 18 fairly regular longitudinal rows of enlarged, conical, keeled tubercles at midbody, extending from posterior part of the head to groin; tubercles in parasagittal rows smaller, feebly keeled and more rounded; approximately six rows of tubercles on either side of parasagittal tubercle rows, highly enlarged, remarkably conical and strongly keeled; lamellae divided in a straight transverse series—seven or eight lamellae beneath fourth digit (manus and pes) and five or six beneath first digit (manus and pes). Males with nine or ten (rarely eight) femoral pores separated by four or five poreless scales; supralabials 11–13; infralabials 8–11. Molecular data based on the mitochondrial ND2 gene supports the distinctiveness of this species and helps ascertain its phylogenetic position within the ‘H. brookii’ group of the Indian Hemidactylus radiation. 


1992 ◽  
Vol 335 (1274) ◽  
pp. 207-219 ◽  

Sphenodon has traditionally been regarded as a little changed survivor of the Permo-Triassic thecodont or eosuchian ‘stem reptiles’ but has alternatively been placed in the Lepidosauria as the plesiomorphic or even apomorphic sister-taxon of the squamates. A cladistic analysis of 16 characters from spermatozoal ultrastructure of Sphenodon and other amniotes unequivocally confirms its exceedingly primitive status. The analysis suggests that monotremes are the sister-group of birds; squamates form the sister-group of a bird + monotreme clade while the three sister-groups successively below the bird + monotreme + squa- mate assemblage are the caiman, the tuatara and the outgroup (turtles). The monotreme + bird couplet, supports the concept of the Haemothermia, but can only be regarded heuristically. The usual concept of mammals as a synapsid-derived outgroup of all other extant amniotes is not substantiated spermatologically. All cladistic analyses made, and a separate consideration of apomorphies, indicate that Sphenodon is spermatologically the most primitive amniote, excepting the Chelonia. It is advanced (apomorphic) for the amniotes in only two of the 16 spermatozoal characters considered. A close, sister-group relationship of Sphenodon with squamates is not endorsed.


Zootaxa ◽  
2005 ◽  
Vol 891 (1) ◽  
pp. 1 ◽  
Author(s):  
Magdalena Szarowska ◽  
Andrzej Falniowski ◽  
FRANK Riedel ◽  
Thomas Wilke

The phylogenetic position of the subfamily Pyrgulinae within the superfamily Rissooidea has been discussed very controversially. Different data sets not only led to different evolutionary scenarios but also to different systematic classifications of the taxon. The present study uses detailed anatomical data for two pyrgulinid taxa, the type species of the subfamily, Pyrgula annulata (Linnaeus, 1767), and the type species of the little known genus Dianella, D. thiesseana (Kobelt, 1878), as well as DNA sequencing data of three gene fragments from representatives of eight rissooidean families to A) infer the phylogenetic position of Pyrgulinae with emphasis on its relationships within the family Hydrobiidae, B) to study the degree of concordance between anatomyand DNAbased phylogenies and C) to trace the evolution of anatomical characters along a multi-gene molecular phylogeny to find the anatomical characters that might be informative for future cladistic analyses. Both anatomical and molecular data sets indicate either a very close or even sister-group relationship of Pyrgulinae and Hydrobiinae. However, there are major conflicts between the two data sets on and above the family level. Notably, Hydrobiidae is not monophyletic in the anatomical analysis. The reconstruction of anatomical character evolution indicates that many of the characters on which the European hydrobioid taxonomy is primarily based upon are problematic. The inability to clearly separate some hydrobiids from other distinct families based on those characters might explain why until only a few years ago, "Hydrobiidae" was a collecting box for numerous rissooidean taxa (mostly species with shells small and lacking any characteristic features). The present study not only stresses the need for comprehensive molecular studies of rissooidean taxa, it also demonstrates that much of the problems surrounding anatomical analyses in rissooidean taxa are due to the lack of comprehensive data for many representatives. In order to aid future comparativeanatomical studies and a better understanding of character evolution in the species-rich family Hydrobiidae, detailed anatomical descriptions for P. annulata and D. thiesseana are provided.Key words: Pyrgulinae, Pyrgula, Dianella, Hydrobiidae, phylogeny, DNA, anatomy, Greece


Zootaxa ◽  
2007 ◽  
Vol 1531 (1) ◽  
pp. 49-55 ◽  
Author(s):  
HONG-XIA CAI ◽  
JING CHE ◽  
JUN-FENG PANG ◽  
ER-MI ZHAO ◽  
YA-PING ZHANG

In order to evaluate the five species groups of Chinese Amolops based on morphological characteristics, and to clarify the phylogenetic position of the concave-eared torrent frog Amolops tormotus, we investigated the phylogeny of Amolops by maximum parsimony, Bayesian Inference, and maximum likelihood methods using two mitochondrial DNA fragments (12S rRNA, 16S rRNA). Our results supported a sister group relationship of Amolops ricketti and Amolops hainanensis. However, the grouping of Amolops mantzorum and Amolops monticola needs to be resolved with more data. Amolops tormotus was nested in genus Odorrana. Thus, recognition of the A. tormotus group is unwarranted and A. tormotus should be referred to genus Odorrana as O. tormota. This species is the sister group of O. nasica plus O. versabilis. The new classification implies that the genus Wurana is to be considered as junior subjective synonym of Odorrana.


2007 ◽  
Vol 21 (3) ◽  
pp. 263 ◽  
Author(s):  
Guilherme Schnell e Schuehli ◽  
Claudio José Barros de Carvalho ◽  
Brian M. Wiegmann

Hypotheses about the evolution of Muscidae have long been the subject of continuous re-evaluation and reinterpretation. Current understandings of the relationships among these flies are based mainly on a single set of characters and are therefore questionable. Our understanding of muscid phylogeny thus needs greater support and further corroboration from additional suites of characters. In the current study, we analysed phylogenetic relationships among 24 species of muscid flies (18 genera and six subfamilies) using 2989 characters derived from sequences of mitochondrial (COI and COII) and nuclear genes (CAD and EF-1α). Data from each gene partition were analysed both in combined and separate phylogenetic analyses using maximum parsimony, maximum likelihood, and Bayesian inference. Support was found for the monophyly of the Muscidae in all analyses and for a sister-group relationship between Coenosiini and Phaoniinae. The latter group was placed in a clade with sampled species of Reinwardtiini and Cyrtoneurininae. The genera Ophyra and Hydrotaea were placed in the Muscinae and a sister-group relationship for Musca and Stomoxys was supported. Sampled species of Polietina form a monophyletic lineage, while Morellia was found to be paraphyletic. Combined analysis of gene partitions improved support and resolution for resulting topologies despite significant incongruence between data partitions found through application of the Incongruence Length Difference test.


2003 ◽  
Vol 17 (1) ◽  
pp. 143 ◽  
Author(s):  
Rienk de Jong

A sister-group relationship of endemic taxa in at least two Gondwanan fragments is considered an indication of a possible Gondwanan ancestry. Without a test of the age of the relationship, such an ancestry remains hypothetical. The relationships of all genera and higher taxa endemic to the Australian region with endemic taxa in other fragments of Gondwana are tested. Out of a total of 207 butterfly genera, 96 genera are endemic. Such a relationship is supported by morphological and molecular characters in a number of analyses in only one case(Cressida with Euryades, in South America). Application of a molecular clock, however, shows the relationship to be not older than c. 30 million years, too young to be the result of the break-up of Gondwana. The other endemic genera generally point to a relationship with the Oriental region, but the relationships of a few genera are still obscure. Consequently, claims of a Gondwanan ancestry in butterflies of the Australian region are ill founded. If such an ancestry exists, it has been obscured by later dispersals and extinctions.


Zootaxa ◽  
2008 ◽  
Vol 1863 (1) ◽  
pp. 1 ◽  
Author(s):  
PATRICK S. DRUCKENMILLER ◽  
ANTHONY P. RUSSELL

Leptocleidus Andrews, 1922 is a poorly known plesiosaur genus from Lower Cretaceous successions of the UK, South Africa, and Australia. Historically, there has been little consensus regarding its phylogenetic position within Plesiosauria, largely because of its seemingly aberrant combination of a relatively small skull and short neck. As a result, a diverse array of potential sister groups have been posited for Leptocleidus, including long-necked Cretaceous elasmosaurids, Early Jurassic “rhomaleosaurs”, and Middle to Late Jurassic pliosaurids. A cladistic analysis including Leptocleidus, and a new, apparently morphologically similar specimen from Alberta, TMP 94.122.01, was undertaken to assess their phylogenetic position within Plesiosauria. A character-taxon matrix was assembled afresh, consisting of 33 operational taxonomic units sampled broadly among plesiosaurs. 185 cranial and postcranial characters used in plesiosaur phylogenetics were critically reanalyzed, of which 152 were employed in the parsimony analysis. The results indicate a basal dichotomous split into the traditionally recognized pliosauroid and plesiosauroid clades. Nested within Pliosauroidea, a monophyletic Leptocleididae was recovered, consisting of L. superstes Andrews, 1922 and L. capensis (Andrews, 1911a). In contrast to earlier suggestions, Leptocleidus neither clusters with Rhomaleosaurus, which was found to be paraphyletic, nor with large-skulled pliosaurid taxa, such as Simolestes. Rather, a sister group relationship between Cretaceous Polycotylidae and Leptocleididae was recovered, which is here named Leptocleidoidea. Although TMP 94.122.01 is superficially similar to Leptocleidus, several discrete characters of the skull nest this new taxon within Polycotylidae. Compared to other phylogenetic hypotheses of plesiosaurs, these results are more congruent with respect to the stratigraphic distribution of leptocleidoids. A classification for Plesiosauria is presented.


Sign in / Sign up

Export Citation Format

Share Document