scholarly journals GGE Biplot Analysis of Genotype x Environment Interaction and Bean Yield Stability of Arabica Coffee (<i>Coffee arabica</i> L.) Genotypes in Southwestern Ethiopia

2021 ◽  
Vol 9 (3) ◽  
pp. 110
Author(s):  
Lemi Beksisa
Author(s):  
Wakuma Merga Sakata

The inconsistence of genotypes across location during plant breeding is the major challenges to the breeder. That is the differential response of genotypes to different environment. Meanwhile stability is the ability of a genotype to withstand stressful conditions and yet be able to produce yield. Thus, stability is an absolute and relative measure. Arabica coffee has location specific adaptation nature and that leads to highly significant instability in its breeding program. In the study of coffee bean yield stability cultivars tested at multi- locations within the domain of coffee growing ecologies of Ethiopia, showed a significant genotype x environment interaction. The review of previous research also indicated inconsistent effects of genotype x environment interaction on cup quality. Yield-stability analysis is very important in measuring cultivar stability and suitability for growing crops across seasons and agro-ecological region to identify stable genotype. The yield stability have been challenge to the plant breeders and biometricians, it complicates the selection of superior genotypes. It is important to minimize the usefulness of the genotype across environments for selecting. Since approach of plant breeding is to develop genotypes that are, optimum for the condition under which they will be grown breeders have to manage yield instability throughout formalized procedures of plant breeding. During stability measurement if the variance is found to be significant, various methods of measuring the stability of genotypes can be used to identify the stable genotype(s). Most of stability analysis parameters are briefly discussed in this review. Int. J. Agril. Res. Innov. Tech. 11(2): 117-123, Dec 2021


2011 ◽  
Vol 39 (1) ◽  
pp. 220 ◽  
Author(s):  
Adesola L. NASSIR ◽  
Omolayo J. ARIYO

Twelve rice varieties were cultivated in inland hydromorphic lowland over a four year-season period in tropical rainforest ecology to study the genotype x environment (GxE) interaction and yield stability and to determine the agronomic and environmental factors responsible for the interaction. Data on yield and agronomic characters and environmental variables were analyzed using the Additive Main Effect and Multiplicative Interaction (AMMI), Genotype and Genotype x Environment Interaction, GGE and the yield stability using the modified rank-sum statistic (YSi). AMMI analysis revealed environmental differences as accounting for 47.6% of the total variation. The genotype and GxE interaction accounted for 28.5% and 24% respectively. The first and second interaction axes captured 57% and 30% of the total variation due to GXE interaction. The analysis identified ‘TOX 3107’ as having a combination of stable and average yield. The GGE captured 85.8%of the total GxE. ‘TOX 3226-53-2-2-2’ and ‘ITA 230’ were high yielding but adjudged unstable by AMMI. These two varieties along with ‘WITA 1’ and ‘TOX 3180-32-2-1-3-5’ were identified with good inland swamp environment, which is essentially moisture based. The two varieties (‘TOX 3226-53-2-2-2’ and ‘ITA 230’), which were equally considered unstable in yield by the stability variance, ?2i, were selected by YSi in addition to ‘TOX 3107’, ‘WITA 1’, ‘IR 8’ and ‘M 55’. The statistic may positively complement AMMI and GGE in selecting varieties suited to specific locations with peculiar fluctuations in environmental indices. Correlation of PC scores with environmental and agronomic variables identified total rainfall up to the reproductive stage, variation in tillering ability and plant height as the most important factors underlying the GxE interaction. Additional information from the models can be positively utilized in varietal development for different ecologies.


2018 ◽  
Vol 53 (1) ◽  
pp. 42-52 ◽  
Author(s):  
Jiuli Ani Vilas Boas Regis ◽  
João Antonio da Costa Andrade ◽  
Adriano dos Santos ◽  
Aparecido Moraes ◽  
Rafael William Romo Trindade ◽  
...  

Abstract: The objective of this work was to select superior sugarcane (Saccharum officinarum) clones with good stability and adaptability, considering the genotype x environment interaction in two productive cycles. Twenty-five early clones plus five control clones were evaluated during two cuts (ratoon cane and plant cane) in 24 environments. A randomized complete block design was used, with three replicates. Tons of stems per hectare and tons of pol per hectare were evaluated. To verify adaptability and stability, the bisegmented regression and the multivariate (AMMI and GGE biplot) methods were used. According to the three methods, which are complementary regarding the desired information, the most promising clones in terms of stability and general adaptability are G5, G12, and G13; the last two are closest to the ideal genotype. The G13 clone is highly productive in favorable and unfavorable environments, presenting the highest averages for ton of stems and pol per hectare. The G3, G4, G10, G15, G17, G18, G22, G23, G25, G26, and G30 clones are not recommended for the 24 evaluated environments.


Sign in / Sign up

Export Citation Format

Share Document