scholarly journals Controller Design for Three-Mass Resonant System Based on Polynomial Method

Author(s):  
Ghazanfar Shahgholian
Author(s):  
Yue Qiao ◽  
Junyi Cao ◽  
Chengbin Ma

This paper discusses the application of polynomial method in the transient response control of a benchmark two-mass system. It is shown that transient responses can be directly addressed by specifying the so-called characteristic ratios and the generalized time constant. The nominal characteristic ratio assignment (CRA) is a good starting point for controller design. And the characteristic ratios with lower indices have a more dominant influence. Two practical low-order control configurations, the integral-proportional (IP) and modified-integral-proportional-derivative (m-IPD) controllers are designed. The primary design strategy of the controllers is to guarantee the lower-index characteristic ratios to be equal to their nominal values, while the higher-index characteristic ratios are determined by the interaction with the generalized time constant and the limits imposed by zeros, a specific control configuration, etc. The demonstrated relationship between the transient responses and the assignments of characteristic ratios and generalized time constant in simulation and experiments explains the effectiveness of the polynomial-method-based controller design.


Author(s):  
László Keviczky ◽  
Ruth Bars ◽  
Jenő Hetthéssy ◽  
Csilla Bányász

IEE Review ◽  
1991 ◽  
Vol 37 (6) ◽  
pp. 228
Author(s):  
Stephen Barnett

Author(s):  
X. Wu ◽  
Y. Yang

This paper presents a new design of omnidirectional automatic guided vehicle based on a hub motor, and proposes a joint controller for path tracking. The proposed controller includes two parts: a fuzzy controller and a multi-step predictive optimal controller. Firstly, based on various steering conditions, the kinematics model of the whole vehicle and the pose (position, angle) model in the global coordinate system are introduced. Secondly, based on the modeling, the joint controller is designed. Lateral deviation and course deviation are used as the input variables of the control system, and the threshold value is switched according to the value of the input variable to realise the correction of the large range of posture deviation. Finally, the joint controller is implemented by using the industrial PC and the self-developed control system based on the Freescale minimum system. Path tracking experiments were made under the straight and circular paths to test the ability of the joint controller for reducing the pose deviation. The experimental results show that the designed guided vehicle has excellent ability to path tracking, which meets the design goals.


Sign in / Sign up

Export Citation Format

Share Document