characteristic ratio
Recently Published Documents


TOTAL DOCUMENTS

73
(FIVE YEARS 12)

H-INDEX

10
(FIVE YEARS 1)

Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1661
Author(s):  
Chenyue Zhang ◽  
Shuzhen Luo ◽  
Wenting Zhao ◽  
Yuntao Wang ◽  
Qiang Zhang ◽  
...  

Summer ozone (O3) pollution in China has become increasingly serious in recent years. This study is based on hourly data of near-surface ozone (O3) and nitrogen oxides (NOx) and volatile organic compounds (VOCs) from June to August 2020 in Yuncheng, combined with meteorological data to analyse the characteristics of O3 pollution in summer and the influence of meteorological factors, precursors, and long-range transport on O3 pollution. In this paper, the VOCs/NOx characteristic ratio method was used to explore the sensitivity of O3 generation. Backward trajectories, cluster analysis, potential source contribution factor (PSCF) analysis and concentration weight trajectory (CWT) analysis were also calculated using Trajstat software. In 2020, Yuncheng had persistent O3 pollution, with the highest concentrations in June, significantly higher than July and August. Conditions of high temperature, low relative humidity and low wind speed contribute to the O3 accumulation. VOCs are the main precursors to the local production of O3. Besides, the long-range transport analysis shows that southeast-oriented air masses are the main direction influencing summer O3 pollution. The primary potential source areas of O3 are in the central and southern part of Henan province, the north-western Anhui province, and the northern Shaanxi. In addition, northern Hubei and southwestern Shandong also influence O3 pollution in summer Yuncheng.


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1598
Author(s):  
Cheng Chen ◽  
Lingrui Wang ◽  
Yunjiang Zhang ◽  
Shanshan Zheng ◽  
Lili Tang

From April to September 2018, five sampling sites were selected in Lianyungang City for volatile organic compounds (VOCs) analysis, including two sampling sites in the urban area (Lianyungang City Environmental Monitoring Supersite and Mine Design Institute), one sampling site in the industrial area (Deyuan Pharmaceutical Factory), and two sampling sites from the suburb (Hugou Management Office and YuehaiLou). The results showed that the mean VOCs concentration followed this pattern: industrial area (36.06 ± 12.2 µg m−3) > urban area (33.47 ± 13.0 µg m−3) > suburban area (27.68 ± 9.8 µg m−3). The seasonal variation of the VOCs trend in the urban and suburban areas was relatively consistent, which was different from that in industrial areas. The concentration levels of VOCs components in urban and industrial areas were relatively close, which were significantly higher than that in suburban areas. The possible sources and relative importance of VOCs in Lianyungang City atmosphere were measured by the characteristic ratio of toluene/benzene (T/B), ethane/acetylene (E/E) and isopentane/TVOCs. The contribution of traffic sources to the VOCs in Lianyungang City was significant (T/B ~ 2), and there were obvious aging phenomena in the five sampling sites (E/E > 4). The ratio of isopentane/TVOCs in the contribution of gasoline volatilization sources in urban and suburban areas was significantly bigger than that in industrial areas. According to the maximum incremental reactivity (MIR) method, aromatics (40.32–58.09%) contributed the most to ozone formation potential (OFP) at the five sampling sites. The top 10 OFP species showed that controlling n-hexane and aromatics, such as benzene, toluene, xylene, and trimethylbenzene in Lianyungang City can effectively control ozone generation. Nineteen typical VOCs components were selected and the sources of VOCs from five sampling points were analyzed by the principal component analysis (PCA) model. The sources of VOCs in different areas in Lianyungang were relatively consistent. Five sources were analyzed at the two sampling sites in the urban area: industrial emission + plants, vehicle exhaust, fuel evaporation, combustion and industrial raw materials. Four sources were analyzed in the industrial area: industrial emission + plants, vehicle exhaust, fuel evaporation and combustion. Five sources were analyzed at the two sampling sites in the suburban area: industrial emission + plants, vehicle exhaust, fuel evaporation, combustion and solvent usage.


Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2794
Author(s):  
Yubia De Anda-Flores ◽  
Elizabeth Carvajal-Millan ◽  
Jaime Lizardi-Mendoza ◽  
Agustin Rascon-Chu ◽  
Judith Tanori-Cordova ◽  
...  

This study aimed to investigate the effect of arabinoxylans (AX) partial de-esterification with feruloyl esterase on the polysaccharide conformational behavior, topographical features, and antioxidant activity. After enzyme treatment, the ferulic acid (FA) content in AX was reduced from 7.30 to 5.48 µg FA/mg polysaccharide, and the molecule registered a small reduction in radius of gyration (RG), hydrodynamic radius (Rh), characteristic ratio (C∞), and persistence length (q). A slight decrease in α and a small increase in K constants in the Mark–Houwink–Sakurada equation for partially de-esterified AX (FAX) suggested a reduction in molecule structural rigidity and a more expanded coil conformation, respectively, in relation to AX. Fourier transform infrared spectroscopy spectra of AX and FAX presented a pattern characteristic for this polysaccharide. Atomic force microscopy topographic analysis of FAX showed a more regular surface without larger hollows in relation to AX. The antioxidant activity of FAX, compared to AX, was reduced by 30 and 41% using both 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS+) and 1,1-diphenyl-2-picryl-hydrazyl (DPPH) methods, respectively. These results suggest that feruloyl esterase treatment of AX could offer a strategy to tailor AX chains conformation, morphological features, and antioxidant activity, impacting the development of advanced biomaterials for biomedical and pharmaceutical applications.


2021 ◽  
Vol 7 ◽  
Author(s):  
Derek Bean ◽  
David L. Blunck

The increasing occurrence of severe wildfires, coupled with the expansion of the wildland urban interface has increased the number of structures in danger of being destroyed by wildfires. Ignition by firebrands is a significant avenue for fire spread and structure loss; thus, understanding processes and parameters that control the ignition of fuel beds by firebrands is important for reducing these losses. In this study the effect of fuel bed characteristics (i.e., particle size and porous or solid fuel bed) on ignition behavior was considered. Modelling and analysis was conducted to better understand parameters that are dominant in controlling ignition. The fuel beds, made from Douglas-fir shavings, Douglas-fir plates, or cardboard plates, were heated with a cartridge heater (i.e., surrogate firebrand) to observe ignition. Smaller particles were observed to ignite more readily in porous beds than larger particles when heat transfer from the heater is primarily through conduction. This occurs in large part due to differences in contact area between the fuel bed and the heater coupled with thermal properties of the fuel bed. As particle sizes increased, ignition was more likely to occur at extended times (>100 s) due to the increased importance of radiation heat transfer. Douglas-fir plates were primarily observed to ignite at times where conduction was the dominant mode of heat transfer (<10 s). Heat flux delivered to the fuel bed was observed to be a more accurate predictor of ignition likelihood and ignition time than heater temperatures. The characteristic ratio of transport and chemical timescales can be used, in conjunction with the measured heat flux and thermal diffusivity of the fuel beds, as a first approximation to predict ignition for the porous fuel beds. This suggests that future work focusing on these parameters may produce a general characterization of fuel bed ignition probability across fuel beds materials and morphologies.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1449
Author(s):  
Tzer-En Nee ◽  
Jen-Cheng Wang ◽  
Bo-Yan Zhong ◽  
Jui-Ju Hsiao ◽  
Ya-Fen Wu

An efficiency droop in GaN-based light-emitting diodes (LED) was characterized by examining its general thermophysical parameters. An effective suppression of emission degradation afforded by the introduction of InGaN/GaN heterobarrier structures in the active region was attributable to an increase in the capture cross-section ratios. The Debye temperatures and the electron–phonon interaction coupling coefficients were obtained from temperature-dependent current-voltage measurements of InGaN/GaN multiple-quantum-well LEDs over a temperature range from 20 to 300 K. It was found that the Debye temperature of the LEDs was modulated by the InN molar fraction in the heterobarriers. As far as the phonons involved in the electron–phonon scattering process are concerned, the average number of phonons decreases with the Debye temperature, and the electron–phonon interaction coupling coefficients phenomenologically reflect the nonradiative transition rates. We can use the characteristic ratio of the Debye temperature to the coupling coefficient (DCR) to assess the efficiency droop phenomenon. Our investigation showed that DCR is correlated to quantum efficiency (QE). The light emission results exhibited the high and low QEs to be represented by the high and low DCRs associated with low and high injection currents, respectively. The DCR can be envisioned as a thermophysical marker of LED performance, not only for efficiency droop characterization but also for heterodevice structure optimization.


2021 ◽  
Author(s):  
Yajun Li ◽  
Fanyong Meng ◽  
Baoli Wang

<p>Studies on particulate inorganic carbon (PIC) in inland waters are relatively scarce due to the low concentration of PIC which makes it difficult to be measured accurately. In other studies, a characteristic ratio of PIC in total suspended solids in the water column has been proposed to estimate the river PIC flux to the sea, and a titration method to measure the PIC fluxes in karst rivers has been reported. Therefore, we used the Gas Bench Ⅱ-IRMS coupled technique method to analyze the δ<sup>13</sup>C<sub>PIC</sub> and PIC concentration in inland waters. The method has the advantage of being suitable for the accurate determination of the isotopic composition of trace PIC samples.</p><p>The purging time and carbon content of samples are the important factors affecting experimental accuracy. This study proposed the optimal purge time and the lowest carbon content of the inland water sample. The samples in the experiment included laboratory calcium carbonate standard (99.95 % purity) and PIC samples from the Wujiang River. The PIC samples from Wujiang River were collected on glass fiber filters. Datasets from the experiment demonstrated that the ideal purge time is 500-700 s, and at least 25 μg C should be included in the sample. The instrument signal value is low and the isotopic value fluctuates widely when the purge time is less than 500 s. The phosphoric acid cannot be injected into the sample bottle due to the high pressure in it when the purge time is more than 700 s. Therefore, a purging time of 600 s was used for the field sample analyses. The peak area displayed by the device is correlated with the carbon content in the sample, and the datasets show a good linear relationship between the peak area and carbon content in the sample when the sample be analyzed contained more than 25 μg of inorganic carbon. The carbon content of the sample can be calculated from the peak area of the same batch of calcium carbonate standard. While the peak signal is too low to detect the sample accurately when the C content is less than 25 μg. Therefore, the sample should contain more than 25 μg for the field sample analyses. This study will help to provide a reference for the method of determining the PIC content and isotopic composition in inland water.</p>


Pharmaceutics ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 586 ◽  
Author(s):  
Dominika Krenczkowska ◽  
Krystyna Mojsiewicz-Pieńkowska ◽  
Bartosz Wielgomas ◽  
Dagmara Bazar ◽  
Zbigniew Jankowski

Cyclic methylsiloxanes D4, D5, D6 (also called cyclic silicones) are widely used in various dermatological products and cosmetics, both for children and adults. As a result of their unique physicochemical properties, the production of cyclic methylsiloxanes has greatly increased over the last few years, which has resulted in increased exposure to mankind. The validated quantitative for gas chromatography-flame ionization detector (GC-FID) analysis with using the transdermal diffusion system with vertical Franz cells demonstrated that ex vivo human skin is not a barrier to cyclic siloxanes. D4, D5, and D6 have a specific affinity to stratum corneum (SC) (especially D6), and can even diffuse into the deeper layers of the skin (epidermis (E) and dermis (D)), or into the receptor fluid as well. An important achievement of this work was the observation of the characteristic ratio partitioning D4, D5, and D6 in skin layers and receptor fluid (RF). The studies have shown that, in order to thoroughly understand the mechanism, it is important to determine not only the differences in the amounts of cumulated doses in total in all skin layers and receptor fluid, but also the mutual ratios of analyte concentrations existing between matrices. For example, in the case of the stratum corneum, the cumulative doses of D4, D5, and D6 were 27.5, 63.9, and 67.2 µg/cm2/24 h, respectively, and in the epidermis, they were 6.9, 29.9, and 10.7 µg/cm2/24 h, respectively, which confirmed the highest affinity of D6 to stratum corneum as the amount diffused into the epidermis was 2.8 times smaller compared to D5. The calculated epidermis-to-stratum corneum ratios of analyte concentrations also confirm this. The largest ratio was identified for D5 (E/SC = 47), followed by D4 (E/SC = 25), and finally by D6 (E/SC = 16). The analysis of the next stage of diffusion from epidermis to dermis revealed that in dermis the highest cumulative dose was observed for D5 (13.9 µg/cm2/24 h), while the doses of D4 and D6 were similar (5.1 and 5.3 µg/cm2/24 h). Considering the concentration gradient, it can be concluded that the diffusion of D5 and D6 occurs at a similar level, while D4 diffuses at a much higher level. These observations were also confirmed by the dermis-to-epidermis concentration ratios. The final stage of diffusion from dermis to the receptor fluid indicated that D4 was able to permeate easily, while D5 exhibited a difficult diffusion and the diffusion of D6 was limited. The receptor fluid-to-dermis concentration ratios (RF/D) were calculated for D4, D5, and D6: 80, 53, and 17, respectively. Our results also revealed the increased risk of D4 and D5 absorption into the blood and lymphatic systems, whereas D6 demonstrated the lowest risk. Therefore, we can argue that, among the three tested compounds, D6 is the safest one that can be used in dermatological, cosmetic, and personal care products. This study demonstrates that the stratum corneum, epidermis, and dermis can be also considered reservoirs of cyclic methylsiloxanes. Therefore, these compounds can demonstrate potential long-term bioaccumulation, and can be absorbed to the bloodstream in a long-term and uncontrolled process.


Polymers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1266 ◽  
Author(s):  
Jia Yang ◽  
Takahiro Sato

Small-angle X-ray scattering functions were measured for six pullulan samples with molecular weights ranging from 2.3 × 104 to 7.4 × 105 in 0.05 M aqueous NaCl at 25 °C and fitted by the perturbed wormlike chain model, comprising touched-bead sub-bodies, to obtain wormlike chain parameters. The parameter values determined were consistent with those determined from previously reported dilute solution properties of aqueous pullulan. Because radii of gyration of not only pullulan polymers, but also pullulan oligomers were consistently explained by the touched-bead wormlike chain model perturbed by the excluded volume effect, the pullulan chain takes a local conformation considerably different from the amylose chain, although both polysaccharides are flexible polymers with an approximately same characteristic ratio.


Author(s):  
Siyan Zeng ◽  
Jing Ma ◽  
Yanhua Ren ◽  
Gang-Jun Liu ◽  
Qi Zhang ◽  
...  

Soil polycyclic aromatic hydrocarbon (PAH) pollution is a major concern due to its negative impact on soil quality around the world. In China, accurate data on soil PAHs and information on the relationship with anthropogenic activities are limited. In this study, about 30,800 samples from 1833 soil sample sites were reviewed from 306 published reports to build a soil PAHs database. Based on the data obtained, the results demonstrated that 24.11% of surface soils in China are heavily contaminated. Meanwhile, the concentration of soil PAHs varied, in the order of independent mining and industrial areas (IMIA) > urban areas > suburban areas > rural areas, and the spatial distribution in China demonstrated a descending trend from north to south. Moreover, the characteristic ratio and PCA-MLR (principal component analysis-multiple linear regression) analysis demonstrated that coal combustion and vehicular exhaust emissions were the main sources of soil PAH pollution in China. On the other hand, provincial total Σ16PAHs in surface soil were significantly correlated with the per square kilometer GDP (gross domestic product) of industrial land, the per capita GDP, as well as the production and consumption of energy. These results indicate that anthropogenic factors have greatly affected the levels of soil PAHs in China. This study improves our understanding on the status and sources of soil PAH contamination in China, thereby facilitating the implementation of strategies of prevention, control, and remediation of soils.


Sign in / Sign up

Export Citation Format

Share Document