O-Carboxymethyl Chitosan Nanoparticles for Controlled Release of Non-Steroidal Anti-Inflammatory Drugs

2014 ◽  
Vol 6 (5) ◽  
pp. 522-530 ◽  
Author(s):  
Dhanya Narayanan ◽  
Neethu Ninan ◽  
R. Jayakumar ◽  
Shantikumar V. Nair ◽  
Deepthy Menon
Foods ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1604
Author(s):  
Yu Xiao ◽  
Chi-Tang Ho ◽  
Yulian Chen ◽  
Yuanliang Wang ◽  
Zihao Wei ◽  
...  

Genistein is one of major isoflavones derived from soybean products and it is believed to have beneficial effects on human health. However, its low water-solubility and poor oral bioavailability severely hamper its use as a functional food ingredient or for pharmaceutical industry. In this study, zein and zein/carboxymethyl chitosan (CMCS) nanoparticles were prepared to encapsulate genistein using a combined liquid–liquid phase separation method. The physicochemical properties of fabricated nanoparticles were characterized by dynamic light scattering (DLS), atomic force microscopy (AFM), and Fourier transform infrared spectroscopy (FTIR). The results demonstrated that genistein encapsulated with zein nanoparticles significantly improved its water dispersibility, antioxidant activity in the aqueous phase, and photostability against UV light. Moreover, genistein encapsulated in zein nanoparticles showed a sustained release property. Furthermore, it was found that encapsulation efficiency of genistein was significantly enhanced after CMCS coating, and this effect was more pronounced after the complex nanoparticles cross-linked with calcium ions when compared with the use of zein as a single encapsulant. In addition, compared to zein nanoparticles without biopolymer coating, CMCS coating significantly enhanced the thermal and storage stability of the formed nanoparticles, and delayed the release of genistein. A schematic diagram of zein and zein/carboxymethyl chitosan (CMCS) nanoparticles formation mechanism for encapsulation of genistein was proposed. According to the results of the current study, it could be concluded that encapsulation of genistein in zein/CMCS nanoparticles is a promising approach to improve its water dispersibility, antioxidant activity, photostability against UV light and provide controlled release for food/pharmaceutical applications.


2003 ◽  
Vol 400 (1-2) ◽  
pp. 227-234 ◽  
Author(s):  
Francesco Castelli ◽  
Chiara Messina ◽  
Maria Grazia Sarpietro ◽  
Rosario Pignatello ◽  
Giovanni Puglisi

2015 ◽  
Vol 06 (06) ◽  
pp. 591-604 ◽  
Author(s):  
Zhiyan Yu ◽  
Xin Sun ◽  
Haixia Song ◽  
Wenqian Wang ◽  
Zhao Ye ◽  
...  

2017 ◽  
Vol 23 (39) ◽  
pp. 9397-9406 ◽  
Author(s):  
Liandong Feng ◽  
Yuqi Wang ◽  
Zhiliang Luo ◽  
Zheng Huang ◽  
Yan Zhang ◽  
...  

2006 ◽  
Vol 308 (1-2) ◽  
pp. 168-174 ◽  
Author(s):  
Ana Rita C. Duarte ◽  
Mariana Sousa Costa ◽  
Ana Luísa Simplício ◽  
Maria Margarida Cardoso ◽  
Catarina M.M. Duarte

2016 ◽  
Vol 87 (6) ◽  
pp. 849-857 ◽  
Author(s):  
Elham Khodaverdi ◽  
Hossein Ali Soleimani ◽  
Fatemeh Mohammadpour ◽  
Farzin Hadizadeh

Sign in / Sign up

Export Citation Format

Share Document