Comparison of the Number of Cumulus Cells and the Expression of LH Receptor, Caspase 3 and P53 with the Success in Oocyte Maturation in the Process of In Vitro Maturation After Vitrification

2017 ◽  
Vol 23 (7) ◽  
pp. 6755-6757
Author(s):  
Adek Amansyah ◽  
Thamrin Tanjung ◽  
Henry Salim Siregar ◽  
Yudha Heru Fibrianto
2014 ◽  
Vol 26 (1) ◽  
pp. 200 ◽  
Author(s):  
C. de Frutos ◽  
R. Vicente-Perez ◽  
P. J. Ross

In vitro maturation (IVM) of oocytes in domestic animals is a widespread practice of research and commercial relevance. Gonadotropic hormones are typically supplemented to the IVM medium to stimulate resumption of meiosis, progression to metaphase II (MII), and oocyte developmental competence. The common use of pituitary-derived products presents 2 problems: contamination from other pituitary hormones and inconsistences from batch-to-batch variation. Recombinant hormones can help circumvent these issues and identify specific gonadotropin requirements for in vitro maturation. The aim of the present study was to determine the effect of supplementing recombinant bovine LH and/or FSH (AspenBio) to the maturation of ovine oocytes in terms of cumulus expansion and progression to the MII stage. Abattoir-derived sheep cumulus–oocyte complexes (COC) were obtained from 1- to 5-mm-diameter antral follicles by ovary slicing. Oocytes with a homogeneous cytoplasm surrounded by at least 3 layers of cumulus cells were selected and cultured in serum-free IVM medium (Cotterill et al. 2012 Reproduction 144, 195–207) at 38.5°C and 5% CO2. The COC obtained from 8 replicates were allocated into 4 experimental groups: (1) no hormones; (2) 1.5 μg mL–1 recombinant bovine LH (rbLH); (3) 1.5 μg mL–1 recombinant bovine FSH (rbFSH); and (4) rbLH and rbFSH. The expansion of cumulus cells was recorded in each group after 24 h of IVM and COC classified as (1) very poor or no cumulus expansion (grade 1); (2) limited cumulus expansion (grade 2); and (3) full cumulus expansion (grade 3). Nuclear maturation in the 4 treatments was evaluated by assessing progression to the MII stage via DNA staining with Hoechst 33342 and fluorescence imaging. The effect of treatment on the observed proportion of MII oocytes was evaluated using a mixed logit model including treatment and replicate as fixed and random effects, respectively. Culture in IVM medium in the absence of gonadotropins or in the presence of rbLH resulted in poor cumulus expansion (grade 1). The supplementation of IVM medium with rbFSH (with or without rbLH) yielded a high degree of cumulus expansion (grades 2–3). Likewise, addition of rbFSH enhanced progression of oocytes to the MII stage, whereas use of rbLH, although it had an effect on progression to MII, did not augment the effect of rbFSH (Table 1). These results indicate that rbFSH is necessary and sufficient to induce sheep oocyte maturation in a high proportion of oocytes. Table 1.Cumulus expansion and oocyte nuclear stage after IVM


2017 ◽  
Vol 29 (1) ◽  
pp. 202 ◽  
Author(s):  
A. Lange-Consiglio ◽  
C. Perrini ◽  
P. Esposti ◽  
F. Cremonesi

The in vitro maturation of canine oocyte is problematic because it is difficult to reproduce the oviducal microenvironment where the in vivo maturation occurs. Because cells are able to communicate with each other by paracrine action, oviducal cells could be in vitro cultivated to obtain the conditioned medium (CM) consisting of soluble factors and microvesicles (MV), which represent a carrier for nonsoluble molecules including microRNA. The aim of the present work was to investigate the effect of the addition of CM or MV, secreted by oviducal cells, to the canine in vitro maturation medium. To generate CM, cells from oviducts of 3 animals in late oestrus were cultured for 5 days at 38.5°C in a humidified atmosphere of 5% CO2. Supernatants were collected, pooled, centrifuged at 2500 × g, and stored at −80°C. Microvesicles were obtained by ultracentrifugation of CM at 100,000 × g for 1 h at 4°C and measured for concentration and size by a Nanosight instrument. Ovaries were obtained from 50 healthy domestic bitches (1–4 years old) of different breeds that underwent ovariectomy regardless of the oestrous cycle. Cumulus-oocyte complexes were released by slicing the ovarian cortex with a scalpel blade, and only Grade 1 cumulus-oocyte complexes (darkly granulated cytoplasm and surrounded by 3 or more compact cumulus cell layers) 110 to 120 µm in diameter were selected for culture. Maturation was performed at 38.5°C in a humidified atmosphere of 5% CO2 and 5% of O2 in bi-phasic systems: 24 h in SOF with 5.0 μg mL−1 of LH followed by 48 h in SOF supplemented with 10% of oestrous bitch serum and 10% CM or 50, 75, 100, or 150 × 106 MV mL−1 labelled with PKH-26. Control was the same medium without CM or MV. Oocytes were observed under a fluorescent microscope to detect metaphase II (MII), by Hoechst staining, and the incorporation of MV. Statistical analysis was performed by chi-square test. Results show that canine oviducal cells secreted MV of 234 ± 23 nm in size, underling that these MV fall within the shedding vesicles category. The incorporation of labelled MV occurred at first in cumulus cells, at 48 h of maturation, and then, at 72 h, in oocyte cytoplasm. These MV had a positive effect on maturation rate (MII) at the concentration of 75 and 100 × 106 MV mL−1 compared with CM and control (20.34 and 21.82 v. 9.09 and 3.95%, respectively). The concentration of 150 × 106 MV mL−1 provided only 9.26% of MII. To understand the role of MV, we assessed the expression of 3 microRNA (miRNA-30b, miR-375, and miR-503) that are involved in some key pathways (WNT, MAPK, ERbB, and TGFβ) regulating follicular development and meiotic resumption. The lower rate of MII with the higher concentration of MV is possibly due to the high level of miR-375, which recent literature shows to suppress the TGFβ pathway, leading to impaired oocyte maturation. In conclusion, the oviducal MV, or specific microRNA, are involved in cellular trafficking during oocyte maturation, and their possible use in vitro could facilitate the exploitation of canine reproductive biotechnologies.


Author(s):  
Adek Amansyah

Objective: To evaluate the relationship between the number of LH receptor and the success of oocyte maturity in the process of in vitro maturation (IVM). Method: This experimental study was conducted in the Permata Hati Infertility Clinical Laboratory, Dr. Sardjito General Hospital, Yogyakarta, with the samples of 300 oocytes obtained through collecting immature cow’s oocytes from the abattoir and grouped the oocytes into 3 (three) groups based on the pattern of oocyte cumulus cells on the vesicle germinal stage 2 - 8 mm with three layers of cumulus cell. The sample of the cumulus cells from these three groups were taken and the LH receptor examination was done with immunohistochemistry. After that, the IVM process was performed to the three groups and its development for 24 hours was evaluated. Its maturation quality was evaluated with the emergence of the first polar body (1PB) and compared to the other groups and related to the number of LH receptor in the three groups. Result: The result of this study indicated that the oocyte cumulus cells showed a difference of function during IVM process. The maturity rate in this study showed that the number of LH receptor was related to the morphological pattern of oocyte cumulus cells with oocyte maturity. The maturity of the cumulus cells which 100% covered the oocyte was higher than that of the cumulus cells which > 50% and < 30% covered the oocytes, namely, 74% compared to 60% and 12%. The result of this study also showed that the average number of LH receptors in the three groups (A, B, and C) was 183.4, 78.8, and 24.0 respectively. A significant difference was found in the three groups (p < 0.0001). When related to IVM maturity, this difference showed that the bigger number of oocyte cumulus cells influenced the oocyte maturity. Conclusion: The number of LH receptor can be used as a prediction to determine the success of oocyte maturation in the process of in vitro maturation. [Indones J Obstet Gynecol 2013; 1-4:183-7] Keywords: IVM, LH receptor, oocyte cumulus cell


2015 ◽  
Vol 27 (1) ◽  
pp. 203
Author(s):  
I. Lindgren ◽  
P. Humblot ◽  
D. Laskowski ◽  
Y. Sjunnesson

Dairy cow fertility has decreased during the last decades, and much evidence indicates that metabolic disorders are an important part of this decline. Insulin is a key factor in the metabolic challenge during the transition period that coincides with the oocyte maturation and may therefore have an impact on the early embryo development. The aim of this study was to test the effect of insulin during oocyte maturation on early embryo development by adding insulin during the oocyte maturation in vitro. In this study, abattoir-derived bovine ovaries were used and cumulus-oocyte complexes (n = 991) were in vitro matured for 22 h according to standard protocols. Insulin was added during maturation in vitro as follows: H (10 µg mL–1 of insulin), L (0.1 µg mL–1 of insulin), or Z (0 µg mL–1 of insulin). After maturation, oocytes were removed and fixed in paraformaldehyde before staining. Click-it TUNEL assay (Invitrogen, Stockholm, Sweden) was used for apoptotic staining and DRAQ5 (BioNordika, Stockholm, Sweden) for nuclear staining (n = 132). Cumulus-oocyte complexes were evaluated using laser scanning confocal microscope (Zeiss LSM 510, Zeiss, Oberkochen, Germany). Five levels of scans were used to assess oocyte maturation (MII stage) and apoptosis. Because of incomplete penetration of the TUNEL stain (3–5 layers of cumulus cells), only the outer 2 layers of the cumulus complex were investigated regarding apoptosis. Apoptotic index was calculated as apoptotic cells/total cells visualised. Remaining oocytes were fertilized and cultured in vitro until Day 8. Day 7 and Day 8 blastocyst formation was assessed as well as blastocyst stage and grade. Effect of insulin treatment on variables was analysed by ANOVA following arc sin √p transformation. Post-ANOVA comparisons between H+L group v. Z were performed by using the contrast option under GLM (Scheffé test). Results are presented as least squares means ± s.e. P-values ≤ 0.05 were considered as statistically significant. Insulin treatment during oocyte maturation in vitro had no significant effect on oocyte nuclear maturation or apoptotic index of the cumulus cells (Z: 0.052 ± 0.025, L: 0.039 ± 0.016, H: 0.077 ± 0.044, P > 0.05). No effect was seen on cleavage rates (Z: 0.85 ± 0.02, L: 0.85 ± 0.02, H: 0.89 ± 0.03, P > 0.05), but insulin treatment significantly decreased Day 7 rates from fertilized oocytes (Z: 0.19 ± 0.02, L: 0.14 ± 0.02, H: 0.12 ± 0.02, P < 0.05). This study also showed a significantly retarded developmental stage and decreased grade of blastocysts in insulin-treated groups taken together when compared with the control group (P < 0.05). In this study, no effect of insulin supplementation during in vitro maturation was seen on bovine oocyte maturation and apoptosis of cumulus cells, but blastocyst formation and development were negatively affected. Further studies are needed for understanding the relationship between the addition of insulin during maturation in vitro and impaired blastocyst formation. Insulin is a common supplement in the first phase of the first in vitro maturation medium for pig oocytes and is believed to have a beneficial effect on this species.Funding was received from Stiftelsen Nils Lagerlöfs Fond H12–0051-NLA.


2019 ◽  
Vol 31 (1) ◽  
pp. 210
Author(s):  
I. Lebedeva ◽  
O. Mityashova ◽  
A. Smekalova ◽  
E. Montvila ◽  
G. Singina ◽  
...  

The quality and developmental capacity of mammalian oocytes depends on cooperation with surrounding cumulus cells. The functional state and activity of cumulus cells changes with oocyte maturation, especially during the oocyte transition from metaphase I (MI) to metaphase II (MII) stage. In the present work, effects of 3 luteotropic factors, progesterone (P4), prolactin (PRL), and LH, during the second phase of in vitro maturation (IVM) on the subsequent expression of proliferation and apoptosis markers in bovine cumulus cells surrounding matured and aged oocytes were studied. A total of 1532 cumulus-oocyte complexes (COC) were cultured for 12h in TCM-199 containing 10% fetal calf serum (FCS), 10μg mL−1 porcine FSH, and 10μg mL−1 ovine LH at 38.5°C and 5% CO2. Thereafter, COC were transferred to the following IVM systems: (1) TCM-199 containing 10% FCS (Control 1) and (2) a monolayer of granulosa cells (GC) precultured for 12h in TCM-199 containing 10% FCS (Control 2). In both systems, the medium of experimental groups was supplemented with either P4 (50 ng mL−1) or bovine PRL (50ng mL−1) or ovine LH (5μg mL−1); then, the COC were matured for next 12h. Half of the COC matured for 12h in both systems were cultured for an additional 24h in fresh TCM-199 containing 10% FCS to test long-term hormonal effects during oocyte aging. After culture, the cumulus expression of the proliferation marker proliferating cell nuclear antigen (PCNA) and the pro-apoptotic markers caspase-3 and Bax was assessed by the immunocytochemical method. The data from 4 to 5 replicates using 84 to 106 COC per treatment were analysed by ANOVA. After IVM in System 1, the rate of PCNA-positive cumulus cells was higher (P&lt;0.05) in the PRL-treated group (41.3±1.6%) than in the control (34.6±2.3%) or LH-treated group (29.9±2.9%), but did not differ from that in the P4-treated group (38.2±4.8%). In the presence of GC (System 2), the respective rates did not change but were more variable. Aging of COC matured in both systems led to a 1.4- to 1.9-fold reduction in the proportion of the cells containing the proliferation marker PCNA (P&lt;0.05). Meanwhile, none of the hormones tested had any long-term effect on the proliferative activity of senescent cumulus cells. The rate of cumulus cells expressing caspase-3 in different groups varied from 48.5±4.9 to 53.8±5.8% and did not depend on the hormones, IVM system, or oocyte aging. The proportion of the Bax-positive cells was also unaffected by luteotropic factors but increased 1.4 to 1.6 times (P&lt;0.01) following 24h of COC aging. Our findings indicate that PRL can exert a short-term stimulatory action on the proliferative activity of bovine cumulus cells in the course of the second phase of IVM. Meanwhile, the cumulus expression of pro-apoptotic markers caspase-3 and Bax is not responsive to P4, PRL, or LH during the second step of IVM. The study was supported by the Russian Science Foundation (project 16-16-10069).


2017 ◽  
Vol 29 (1) ◽  
pp. 192
Author(s):  
P. Ferré ◽  
K. X. Nguyen ◽  
T. Wakai ◽  
H. Funahashi

This experiment was undertaken to assess the meiotic and developmental competences of oocytes derived from different sized follicles and denuded of cumulus cells 0, 20, and 44 h after the start of culture for in vitro maturation (IVM). Groups of 60 oocyte-cumulus complexes from small- (SF; <3 mm) and medium-sized follicles (MF; 3–6 mm) were cultured for IVM in porcine oocyte medium with 50 μM β-mercaptoethanol supplemented with 1 mM dibutyryl-cyclic adenosine monophosphate, 10 IU mL−1 of eCG, and 10 IU mL−1 of hCG for 20 h at 39°C and 5% CO2 in air. Then, after washing, they continued culture in fresh β-mercaptoethanol without dibutyryl-cyclic adenosine monophosphate and gonadotropins under the same conditions for another 24 h. At 0, 20, and 44 h of IVM, cumulus cells were removed with 0.1% (wt/vol) hyaluronidase and the denuded oocytes continued IVM culture following the protocol. Mature oocytes with the first polar body were selected, parthenogenetically activated with a single electrical pulse (DC: 1.2 kV/cm, 30 µs), incubated with 4% (wt/vol) BSA and 5 μM cytochalasin B for 4 h, and cultured in porcine zygote medium for 5 days. Cleavage and blastocyst formation rates were observed on Day 2 and 5, respectively. Blastocysts were stained with 4’,6-diamidino-2-phenylindole for cell count assessment. The experiment was replicated 5 times and analysed with a 1- or 2-way ANOVA. If P < 0.05 in ANOVA, a Tukey multiple comparisons test was performed. Regardless of the time of cumulus cell removal, oocytes from MF had significantly higher in rates of maturation, cleavage, and blastocyst rates, as compared with those from SF, whereas there were no significant differences in the cell number of blastocysts between SF and MF (32 v. 34 cells, respectively). When oocytes were denuded before IVM culture, rates of oocyte maturation (37.6% in SF and 50.8% in MF), and blastocyst formation (2.7% in SF and 27.3% in MF) were significantly lower than controls (51.2% in SF and 76% in MF; 25.8% in SF and 48.5% in MF, respectively). When oocytes were denuded 20 h after the start of IVM, oocyte maturation rates were significantly increased (64.1% in SF and 82.5% in MF) as compared with controls, whereas no significant differences were observed in cleavage and blastocyst formation rates in comparison with controls. These results conclude that removing cumulus cells from oocyte-cumulus complexes 20 h after the start of IVM improves the meiotic competence of oocytes derived from both SF and MF, without any reduction of developmental competence of the oocytes following parthenogenetical activation.


2013 ◽  
Vol 25 (1) ◽  
pp. 280
Author(s):  
M. Nakakoji ◽  
H. Funahashi

The degree of cumulus expansion, an important step in oocyte maturation, of porcine cumulus–oocyte complexes (COC) derived from small follicles (SF: 1 to 2 mm in diameter) is known to be lower than those derived from middle follicles (MF: 3 to 6 mm in diameter). The objective of this study was to compare the abilities of hyaluronan (HA) synthesis of COC from SF and MF. Furthermore, the effect of oestradiol during pre-incubation of COC on proliferation of the cumulus cells was examined. Cumulus–oocyte complexes from SF and MF of porcine ovaries were cultured for in vitro maturation [IVM, in modified porcine oocyte medium (Yoshioka et al. 2008 J. Reprod. Dev. 54, 208–213) supplemented with 50 µM β-mercaptoethanol, 10 IU mL–1 of eCG, 10 IU mL–1 of hCG, and 1 mM dbcAMP for 20 h and then in the fresh medium without those supplements for another 24 h]. Hyaluronan production was quantified at 20 h after the start of IVM with a commercial HA-ELISA kit (20 COC/tube × 4 times). The number of cumulus cells was assessed 0 and 20 h after the start of IVM (50 COC × 4 times). Furthermore, proliferation of cumulus cells was examined after pre-culture of COC (n = 40 COC × 5 times) in modified porcine oocyte medium with various concentrations of oestradiol (0, 0.1, 1, and 10 ng mL–1) for 6 h. Statistical analyses of results from 4 to 5 replicated trials were performed by ANOVA with a Bonferroni-Dunn post-hoc test (significance, P < 0.05). The degree of cumulus expansion of COC from MF (n = 152) was higher than that of COC from SF (n = 156). The incidence of metaphase-II oocytes was significantly lower in COC from SF (n = 133; 48.9%) than in COC from MF (n = 148; 74.7%). The HA content of COC was higher in those from MF (20.8 µg/COC) than in those from SF (10.8 µg/COC), whereas the content per cumulus cell was not different because the numbers of cumulus cells at 0 and 20 h were also higher in COC (n = 200 in each group) from MF (3.0 × 103 and 3.3 × 103 cells, respectively) than from SF (2.0 × 103 and 2.5 × 103 cells, respectively). Cumulus cells proliferated significantly in the presence of oestradiol, regardless of the concentration, during pre-incubation for 6 h (2.5 to 2.8 × 103 cells), as compared with the oestradiol-free controls (2.2 × 103 cells). These results demonstrate that the different abilities of cumulus expansion between COC (n = 200 in each group) from SF and MF may be due to the number of cumulus cells per COC. Pre-incubation in the presence of oestradiol stimulates the proliferation of cumulus cells and may improve the oocyte maturation of COC derived from SF.


2016 ◽  
Vol 28 (2) ◽  
pp. 237
Author(s):  
S. H. Lee ◽  
H. J. Oh ◽  
G. A. Kim ◽  
M. J. Kim ◽  
Y. B. Choi ◽  
...  

In oestrus stage, canine oocytes surrounded by cumulus cells undergo maturation in oviduct for 3 days after ovulation. We hypothesised that canine cumulus cells (cCC) and canine oviduct cells (cOC) in oestrus stage might affect the maturation of oocyte and embryo development. Therefore, the present study was aimed to compare the effects of cCC and cOC co-culture system on oocyte in vitro maturation and embryo in vitro development. cCC were separated from cumulus‐oocyte complex (COC) in ovary from bitches in oestrus phase. cOC were collected from oviduct flushing of bitches in oestrus phase. Both cCC and cOC were cultured and cryopreserved until use for co-culture. In the first experiment, the effect of co-culture using cCC and cOC on porcine oocyte in vitro maturation (IVM) were investigated. The porcine COC were randomly cultured in different co-culture groups as follows: 1) co-culturing with cCC for 42 h, 2) co-culturing with cOC for 42 h, and 3) culturing in absence of cCC or cOC. After IVM, extrusion of the first polar body was observed under a microscope. In the second experiment, the matured oocytes with the first polar body derived from each group were activated with electrical stimulus. Parthenotes were cultured in porcine zygote medium-5 (PZM-5) for 7 days at 39°C, 5% CO2 and O2 in a humidified atmosphere. The embryo developmental competence was estimated by assessing the in vitro development under microscope. The third experiment was to evaluate the reactive oxygen species (ROS) levels in each supernatant medium obtained from cCC and cOC co-culture group after IVM using a OxiselectTM ROS ELISA Assay kit. Last, analysis of genes (MAPK1/3, SMAD2/3, GDF9 and BMP15) expression in cCC and cOC co-cultured with porcine COC using real-time PCR is in progress. As results, IVM rate of cOC group (91.19 ± 0.45%) was significantly higher than that of cCC and control group (86.50 ± 0.61% and 79.81 ± 0.82%; P < 0.05). Also, cOC groups expressed the highest efficiency in cleavage rate, blastocyst formation rate, and the total cell number in blastocyst (P < 0.05). In ROS levels, cOC group (555 ± 7.77 nM) were significantly lower than cCC and control groups (596.8 ± 8.52 nM and 657.8 ± 11.34 nM). The present study demonstrated that co-culture with cOC improved the in vitro oocyte maturation and the in vitro development rate of porcine embryos. The ROS level decreased in cOC co-culture would have beneficial influence on oocytes maturation. For further study, we will investigate the relation between gene expression related to oocyte maturation and the co-culture results. This research was supported by a global PhD Fellowship Program through NRF funded by the Ministry of Education (NRF-20142A1021187), RDA (#PJ010928032015), IPET (#311011–05–4-SB010, #311062–04–3-SB010), Research Institute for Veterinary Science, and the BK21 plus program.


2010 ◽  
Vol 22 (9) ◽  
pp. 64
Author(s):  
K. R. Dunning ◽  
L. N. Watson ◽  
J. G. Thompson ◽  
R. L. Robker ◽  
D. L. Russell

Cumulus matrix genes are positively correlated with oocyte competence [1]. Formation of the expanded cumulus matrix during oocyte maturation is well described; however its function remains elusive. We investigated whether cumulus matrix acts as a molecular filter, based on recognised filtration properties of analogous matrices. We found that cumulus matrix controls metabolite supply to the oocyte and retains prostaglandin E2 (PGE2), which is critical in oocyte maturation. The uptake of fluorescently labelled hydrophilic and hydrophobic metabolites showed that cumulus matrix formation significantly impeded diffusion to the oocyte. Expanded in vivo matured cumulus oocyte complexes (COCs, eCG+hCG16h) resisted uptake of glucose and cholesterol compared to unexpanded (eCG44h, P < 0.05), as assessed by confocal microscopy and spatial quantitation of fluorescence (P < 0.05). In vitro maturation (IVM) results in pronounced compositional deficiency of cumulus matrix proteins [2] and poor oocyte quality. Glucose and cholesterol were transported more readily into cumulus cells and the oocyte of IVM COCs (matured in αMEM/5% FCS/50 mIU/mL FSH, 16 h) compared to in vivo matured COCs (P < 0.05 and P = 0.08, respectively). Taking the inverse approach we found that PGE2 synthesised by cumulus cells is retained within the matrix compartment of in vivo matured COCs but IVM COCs did not retain PGE2 and secreted 4.3-fold more into the media. The relationship of retained to secreted PGE2 was significantly higher after in vivo maturation vs IVM COCs (P < 0.0001). This property of the COC matrix reveals a potential mechanism whereby the prostaglandin signal intensifies through a physicochemical mechanism rather than gene regulation. This is the first demonstration that cumulus matrix regulates diffusion toward and secretion from the COC, thus excluding glucose, known to negatively affect oocyte quality, and trapping factors, including PGE2, with critical roles in oocyte maturation and fertilisation. Thus, IVM may reduce oocyte quality due to poor trafficking of metabolites and signalling molecules. (1) McKenzie LJ, et al. Human cumulus granulosa cell gene expression: a predictor of fertilization and embryo selection in women undergoing IVF. Hum Reprod 2004; 19: 2869–2874.(2) Dunning KR, et al. Altered composition of the cumulus-oocyte complex matrix during in vitro maturation of oocytes. Hum Reprod 2007; 22: 2842–2850.


Sign in / Sign up

Export Citation Format

Share Document