Dynamics Analysis for a Fractional-Order HIV Infection Model with Delay

2015 ◽  
Vol 12 (12) ◽  
pp. 5103-5108 ◽  
Author(s):  
Zhenghong Guo ◽  
Xinhua Ma ◽  
Yang Zhao
2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Adnane Boukhouima ◽  
Khalid Hattaf ◽  
Noura Yousfi

We propose a fractional order model in this paper to describe the dynamics of human immunodeficiency virus (HIV) infection. In the model, the infection transmission process is modeled by a specific functional response. First, we show that the model is mathematically and biologically well posed. Second, the local and global stabilities of the equilibria are investigated. Finally, some numerical simulations are presented in order to illustrate our theoretical results.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Linli Zhang ◽  
Gang Huang ◽  
Anping Liu ◽  
Ruili Fan

We introduce the fractional-order derivatives into an HIV infection model with nonlinear incidence and show that the established model in this paper possesses nonnegative solution, as desired in any population dynamics. We also deal with the stability of the infection-free equilibrium, the immune-absence equilibrium, and the immune-presence equilibrium. Numerical simulations are carried out to illustrate the results.


2019 ◽  
Vol Volume 30 - 2019 - MADEV... ◽  
Author(s):  
Moussa Bachraoui ◽  
Khalid Hattaf ◽  
Noura Yousfi

Modeling by fractional order differential equations has more advantages to describe the dynamics of phenomena with memory which exists in many biological systems. In this paper, we propose a fractional order model for human immunodeficiency virus (HIV) infection by including a class of infected cells that are not yet producing virus, i.e., cells in the eclipse stage. We first prove the positivity and bound-edness of solutions in order to ensure the well-posedness of the proposed model. By constructing appropriate Lyapunov functionals, the global stability of the disease-free equilibrium and the chronic infection equilibrium is established. Numerical simulations are presented in order to validate our theoretical results.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Zhimin Chen ◽  
Xiuxiang Liu ◽  
Liling Zeng

Abstract In this paper, a human immunodeficiency virus (HIV) infection model that includes a protease inhibitor (PI), two intracellular delays, and a general incidence function is derived from biologically natural assumptions. The global dynamical behavior of the model in terms of the basic reproduction number $\mathcal{R}_{0}$ R 0 is investigated by the methods of Lyapunov functional and limiting system. The infection-free equilibrium is globally asymptotically stable if $\mathcal{R}_{0}\leq 1$ R 0 ≤ 1 . If $\mathcal{R}_{0}>1$ R 0 > 1 , then the positive equilibrium is globally asymptotically stable. Finally, numerical simulations are performed to illustrate the main results and to analyze thre effects of time delays and the efficacy of the PI on $\mathcal{R}_{0}$ R 0 .


2018 ◽  
Vol 28 (09) ◽  
pp. 1850109 ◽  
Author(s):  
Xiangming Zhang ◽  
Zhihua Liu

We make a mathematical analysis of an age structured HIV infection model with both virus-to-cell and cell-to-cell transmissions to understand the dynamical behavior of HIV infection in vivo. In the model, we consider the proliferation of uninfected CD[Formula: see text] T cells by a logistic function and the infected CD[Formula: see text] T cells are assumed to have an infection-age structure. Our main results concern the Hopf bifurcation of the model by using the theory of integrated semigroup and the Hopf bifurcation theory for semilinear equations with nondense domain. Bifurcation analysis indicates that there exist some parameter values such that this HIV infection model has a nontrivial periodic solution which bifurcates from the positive equilibrium. The numerical simulations are also carried out.


2019 ◽  
Vol 307 ◽  
pp. 1-12 ◽  
Author(s):  
Carla M.A. Pinto ◽  
Ana R.M. Carvalho ◽  
João N. Tavares

SeMA Journal ◽  
2017 ◽  
Vol 75 (2) ◽  
pp. 271-283 ◽  
Author(s):  
Kourosh Parand ◽  
Zahra Kalantari ◽  
Mehdi Delkhosh

Sign in / Sign up

Export Citation Format

Share Document