scholarly journals Global stability of a fractional order HIV infection model with cure of infected cells in eclipse stage

2019 ◽  
Vol Volume 30 - 2019 - MADEV... ◽  
Author(s):  
Moussa Bachraoui ◽  
Khalid Hattaf ◽  
Noura Yousfi

Modeling by fractional order differential equations has more advantages to describe the dynamics of phenomena with memory which exists in many biological systems. In this paper, we propose a fractional order model for human immunodeficiency virus (HIV) infection by including a class of infected cells that are not yet producing virus, i.e., cells in the eclipse stage. We first prove the positivity and bound-edness of solutions in order to ensure the well-posedness of the proposed model. By constructing appropriate Lyapunov functionals, the global stability of the disease-free equilibrium and the chronic infection equilibrium is established. Numerical simulations are presented in order to validate our theoretical results.

2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Adnane Boukhouima ◽  
Khalid Hattaf ◽  
Noura Yousfi

We propose a fractional order model in this paper to describe the dynamics of human immunodeficiency virus (HIV) infection. In the model, the infection transmission process is modeled by a specific functional response. First, we show that the model is mathematically and biologically well posed. Second, the local and global stabilities of the equilibria are investigated. Finally, some numerical simulations are presented in order to illustrate our theoretical results.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Zhimin Chen ◽  
Xiuxiang Liu ◽  
Liling Zeng

Abstract In this paper, a human immunodeficiency virus (HIV) infection model that includes a protease inhibitor (PI), two intracellular delays, and a general incidence function is derived from biologically natural assumptions. The global dynamical behavior of the model in terms of the basic reproduction number $\mathcal{R}_{0}$ R 0 is investigated by the methods of Lyapunov functional and limiting system. The infection-free equilibrium is globally asymptotically stable if $\mathcal{R}_{0}\leq 1$ R 0 ≤ 1 . If $\mathcal{R}_{0}>1$ R 0 > 1 , then the positive equilibrium is globally asymptotically stable. Finally, numerical simulations are performed to illustrate the main results and to analyze thre effects of time delays and the efficacy of the PI on $\mathcal{R}_{0}$ R 0 .


2015 ◽  
Vol 2015 ◽  
pp. 1-25
Author(s):  
A. M. Elaiw ◽  
N. A. Alghamdi

We study the global stability of three HIV infection models with humoral immune response. We consider two types of infected cells: the first type is the short-lived infected cells and the second one is the long-lived chronically infected cells. In the three HIV infection models, we modeled the incidence rate by bilinear, saturation, and general forms. The models take into account two types of discrete-time delays to describe the time between the virus entering into an uninfected CD4+T cell and the emission of new active viruses. The existence and stability of all equilibria are completely established by two bifurcation parameters,R0andR1. The global asymptotic stability of the steady states has been proven using Lyapunov method. In case of the general incidence rate, we have presented a set of sufficient conditions which guarantee the global stability of model. We have presented an example and performed numerical simulations to confirm our theoretical results.


2018 ◽  
Vol 241 ◽  
pp. 01012
Author(s):  
Sanaa Harroudi ◽  
Karam Allali

In this paper, we study a mathematical model of human immunodeficiency virus dynamics with logistic growth and infected cells in eclipse phase. This model describes the interactions between uninfected CD4+ T cells, infected CD4+ T cells in latent stage, productively infected CD4+ T cells and free virus. The positivity and boundedness of solutions for non negative initial data are proved. The stability of disease-free equilibrium and endemic equilibrium are rigorously established. Numerical simulations are also provided to give a more complete representation of the system dynamics.


Sign in / Sign up

Export Citation Format

Share Document